1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
//! AArch64 ISA definitions: immediate constants.

// Some variants are never constructed, but we still want them as options in the future.
#[allow(dead_code)]
use crate::ir::types::*;
use crate::ir::Type;
use crate::isa::aarch64::inst::{OperandSize, ScalarSize};

use regalloc::{PrettyPrint, RealRegUniverse};

use core::convert::TryFrom;
use std::string::String;

/// An immediate that represents the NZCV flags.
#[derive(Clone, Copy, Debug)]
pub struct NZCV {
    /// The negative condition flag.
    n: bool,
    /// The zero condition flag.
    z: bool,
    /// The carry condition flag.
    c: bool,
    /// The overflow condition flag.
    v: bool,
}

impl NZCV {
    pub fn new(n: bool, z: bool, c: bool, v: bool) -> NZCV {
        NZCV { n, z, c, v }
    }

    /// Bits for encoding.
    pub fn bits(&self) -> u32 {
        (u32::from(self.n) << 3)
            | (u32::from(self.z) << 2)
            | (u32::from(self.c) << 1)
            | u32::from(self.v)
    }
}

/// An unsigned 5-bit immediate.
#[derive(Clone, Copy, Debug)]
pub struct UImm5 {
    /// The value.
    value: u8,
}

impl UImm5 {
    pub fn maybe_from_u8(value: u8) -> Option<UImm5> {
        if value < 32 {
            Some(UImm5 { value })
        } else {
            None
        }
    }

    /// Bits for encoding.
    pub fn bits(&self) -> u32 {
        u32::from(self.value)
    }
}

/// A signed, scaled 7-bit offset.
#[derive(Clone, Copy, Debug)]
pub struct SImm7Scaled {
    /// The value.
    pub value: i16,
    /// multiplied by the size of this type
    pub scale_ty: Type,
}

impl SImm7Scaled {
    /// Create a SImm7Scaled from a raw offset and the known scale type, if
    /// possible.
    pub fn maybe_from_i64(value: i64, scale_ty: Type) -> Option<SImm7Scaled> {
        assert!(scale_ty == I64 || scale_ty == I32 || scale_ty == F64 || scale_ty == I8X16);
        let scale = scale_ty.bytes();
        assert!(scale.is_power_of_two());
        let scale = i64::from(scale);
        let upper_limit = 63 * scale;
        let lower_limit = -(64 * scale);
        if value >= lower_limit && value <= upper_limit && (value & (scale - 1)) == 0 {
            Some(SImm7Scaled {
                value: i16::try_from(value).unwrap(),
                scale_ty,
            })
        } else {
            None
        }
    }

    /// Create a zero immediate of this format.
    pub fn zero(scale_ty: Type) -> SImm7Scaled {
        SImm7Scaled { value: 0, scale_ty }
    }

    /// Bits for encoding.
    pub fn bits(&self) -> u32 {
        let ty_bytes: i16 = self.scale_ty.bytes() as i16;
        let scaled: i16 = self.value / ty_bytes;
        assert!(scaled <= 63 && scaled >= -64);
        let scaled: i8 = scaled as i8;
        let encoded: u32 = scaled as u32;
        encoded & 0x7f
    }
}

#[derive(Clone, Copy, Debug)]
pub struct FPULeftShiftImm {
    pub amount: u8,
    pub lane_size_in_bits: u8,
}

impl FPULeftShiftImm {
    pub fn maybe_from_u8(amount: u8, lane_size_in_bits: u8) -> Option<Self> {
        debug_assert!(lane_size_in_bits == 32 || lane_size_in_bits == 64);
        if amount < lane_size_in_bits {
            Some(Self {
                amount,
                lane_size_in_bits,
            })
        } else {
            None
        }
    }

    pub fn enc(&self) -> u32 {
        debug_assert!(self.lane_size_in_bits.is_power_of_two());
        debug_assert!(self.lane_size_in_bits > self.amount);
        // The encoding of the immediate follows the table below,
        // where xs encode the shift amount.
        //
        // | lane_size_in_bits | encoding |
        // +------------------------------+
        // | 8                 | 0001xxx  |
        // | 16                | 001xxxx  |
        // | 32                | 01xxxxx  |
        // | 64                | 1xxxxxx  |
        //
        // The highest one bit is represented by `lane_size_in_bits`. Since
        // `lane_size_in_bits` is a power of 2 and `amount` is less
        // than `lane_size_in_bits`, they can be ORed
        // together to produced the encoded value.
        u32::from(self.lane_size_in_bits | self.amount)
    }
}

#[derive(Clone, Copy, Debug)]
pub struct FPURightShiftImm {
    pub amount: u8,
    pub lane_size_in_bits: u8,
}

impl FPURightShiftImm {
    pub fn maybe_from_u8(amount: u8, lane_size_in_bits: u8) -> Option<Self> {
        debug_assert!(lane_size_in_bits == 32 || lane_size_in_bits == 64);
        if amount > 0 && amount <= lane_size_in_bits {
            Some(Self {
                amount,
                lane_size_in_bits,
            })
        } else {
            None
        }
    }

    pub fn enc(&self) -> u32 {
        debug_assert_ne!(0, self.amount);
        // The encoding of the immediate follows the table below,
        // where xs encodes the negated shift amount.
        //
        // | lane_size_in_bits | encoding |
        // +------------------------------+
        // | 8                 | 0001xxx  |
        // | 16                | 001xxxx  |
        // | 32                | 01xxxxx  |
        // | 64                | 1xxxxxx  |
        //
        // The shift amount is negated such that a shift ammount
        // of 1 (in 64-bit) is encoded as 0b111111 and a shift
        // amount of 64 is encoded as 0b000000,
        // in the bottom 6 bits.
        u32::from((self.lane_size_in_bits * 2) - self.amount)
    }
}

/// a 9-bit signed offset.
#[derive(Clone, Copy, Debug)]
pub struct SImm9 {
    /// The value.
    pub value: i16,
}

impl SImm9 {
    /// Create a signed 9-bit offset from a full-range value, if possible.
    pub fn maybe_from_i64(value: i64) -> Option<SImm9> {
        if value >= -256 && value <= 255 {
            Some(SImm9 {
                value: value as i16,
            })
        } else {
            None
        }
    }

    /// Create a zero immediate of this format.
    pub fn zero() -> SImm9 {
        SImm9 { value: 0 }
    }

    /// Bits for encoding.
    pub fn bits(&self) -> u32 {
        (self.value as u32) & 0x1ff
    }

    /// Signed value of immediate.
    pub fn value(&self) -> i32 {
        self.value as i32
    }
}

/// An unsigned, scaled 12-bit offset.
#[derive(Clone, Copy, Debug)]
pub struct UImm12Scaled {
    /// The value.
    pub value: u16,
    /// multiplied by the size of this type
    pub scale_ty: Type,
}

impl UImm12Scaled {
    /// Create a UImm12Scaled from a raw offset and the known scale type, if
    /// possible.
    pub fn maybe_from_i64(value: i64, scale_ty: Type) -> Option<UImm12Scaled> {
        // Ensure the type is at least one byte.
        let scale_ty = if scale_ty == B1 { B8 } else { scale_ty };

        let scale = scale_ty.bytes();
        assert!(scale.is_power_of_two());
        let scale = scale as i64;
        let limit = 4095 * scale;
        if value >= 0 && value <= limit && (value & (scale - 1)) == 0 {
            Some(UImm12Scaled {
                value: value as u16,
                scale_ty,
            })
        } else {
            None
        }
    }

    /// Create a zero immediate of this format.
    pub fn zero(scale_ty: Type) -> UImm12Scaled {
        UImm12Scaled { value: 0, scale_ty }
    }

    /// Encoded bits.
    pub fn bits(&self) -> u32 {
        (self.value as u32 / self.scale_ty.bytes()) & 0xfff
    }

    /// Value after scaling.
    pub fn value(&self) -> u32 {
        self.value as u32
    }

    /// The value type which is the scaling base.
    pub fn scale_ty(&self) -> Type {
        self.scale_ty
    }
}

/// A shifted immediate value in 'imm12' format: supports 12 bits, shifted
/// left by 0 or 12 places.
#[derive(Clone, Debug)]
pub struct Imm12 {
    /// The immediate bits.
    pub bits: u16,
    /// Whether the immediate bits are shifted left by 12 or not.
    pub shift12: bool,
}

impl Imm12 {
    /// Compute a Imm12 from raw bits, if possible.
    pub fn maybe_from_u64(val: u64) -> Option<Imm12> {
        if val == 0 {
            Some(Imm12 {
                bits: 0,
                shift12: false,
            })
        } else if val < 0xfff {
            Some(Imm12 {
                bits: val as u16,
                shift12: false,
            })
        } else if val < 0xfff_000 && (val & 0xfff == 0) {
            Some(Imm12 {
                bits: (val >> 12) as u16,
                shift12: true,
            })
        } else {
            None
        }
    }

    /// Create a zero immediate of this format.
    pub fn zero() -> Self {
        Imm12 {
            bits: 0,
            shift12: false,
        }
    }

    /// Bits for 2-bit "shift" field in e.g. AddI.
    pub fn shift_bits(&self) -> u32 {
        if self.shift12 {
            0b01
        } else {
            0b00
        }
    }

    /// Bits for 12-bit "imm" field in e.g. AddI.
    pub fn imm_bits(&self) -> u32 {
        self.bits as u32
    }
}

/// An immediate for logical instructions.
#[derive(Clone, Debug, PartialEq)]
pub struct ImmLogic {
    /// The actual value.
    value: u64,
    /// `N` flag.
    pub n: bool,
    /// `S` field: element size and element bits.
    pub r: u8,
    /// `R` field: rotate amount.
    pub s: u8,
    /// Was this constructed for a 32-bit or 64-bit instruction?
    pub size: OperandSize,
}

impl ImmLogic {
    /// Compute an ImmLogic from raw bits, if possible.
    pub fn maybe_from_u64(value: u64, ty: Type) -> Option<ImmLogic> {
        // Note: This function is a port of VIXL's Assembler::IsImmLogical.

        if ty != I64 && ty != I32 {
            return None;
        }
        let operand_size = OperandSize::from_ty(ty);

        let original_value = value;

        let value = if ty == I32 {
            // To handle 32-bit logical immediates, the very easiest thing is to repeat
            // the input value twice to make a 64-bit word. The correct encoding of that
            // as a logical immediate will also be the correct encoding of the 32-bit
            // value.

            // Avoid making the assumption that the most-significant 32 bits are zero by
            // shifting the value left and duplicating it.
            let value = value << 32;
            value | value >> 32
        } else {
            value
        };

        // Logical immediates are encoded using parameters n, imm_s and imm_r using
        // the following table:
        //
        //    N   imms    immr    size        S             R
        //    1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
        //    0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
        //    0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
        //    0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
        //    0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
        //    0  11110s  xxxxxr     2    UInt(s)       UInt(r)
        // (s bits must not be all set)
        //
        // A pattern is constructed of size bits, where the least significant S+1 bits
        // are set. The pattern is rotated right by R, and repeated across a 32 or
        // 64-bit value, depending on destination register width.
        //
        // Put another way: the basic format of a logical immediate is a single
        // contiguous stretch of 1 bits, repeated across the whole word at intervals
        // given by a power of 2. To identify them quickly, we first locate the
        // lowest stretch of 1 bits, then the next 1 bit above that; that combination
        // is different for every logical immediate, so it gives us all the
        // information we need to identify the only logical immediate that our input
        // could be, and then we simply check if that's the value we actually have.
        //
        // (The rotation parameter does give the possibility of the stretch of 1 bits
        // going 'round the end' of the word. To deal with that, we observe that in
        // any situation where that happens the bitwise NOT of the value is also a
        // valid logical immediate. So we simply invert the input whenever its low bit
        // is set, and then we know that the rotated case can't arise.)
        let (value, inverted) = if value & 1 == 1 {
            (!value, true)
        } else {
            (value, false)
        };

        if value == 0 {
            return None;
        }

        // The basic analysis idea: imagine our input word looks like this.
        //
        //    0011111000111110001111100011111000111110001111100011111000111110
        //                                                          c  b    a
        //                                                          |<--d-->|
        //
        // We find the lowest set bit (as an actual power-of-2 value, not its index)
        // and call it a. Then we add a to our original number, which wipes out the
        // bottommost stretch of set bits and replaces it with a 1 carried into the
        // next zero bit. Then we look for the new lowest set bit, which is in
        // position b, and subtract it, so now our number is just like the original
        // but with the lowest stretch of set bits completely gone. Now we find the
        // lowest set bit again, which is position c in the diagram above. Then we'll
        // measure the distance d between bit positions a and c (using CLZ), and that
        // tells us that the only valid logical immediate that could possibly be equal
        // to this number is the one in which a stretch of bits running from a to just
        // below b is replicated every d bits.
        fn lowest_set_bit(value: u64) -> u64 {
            let bit = value.trailing_zeros();
            1u64.checked_shl(bit).unwrap_or(0)
        }
        let a = lowest_set_bit(value);
        assert_ne!(0, a);
        let value_plus_a = value.wrapping_add(a);
        let b = lowest_set_bit(value_plus_a);
        let value_plus_a_minus_b = value_plus_a - b;
        let c = lowest_set_bit(value_plus_a_minus_b);

        let (d, clz_a, out_n, mask) = if c != 0 {
            // The general case, in which there is more than one stretch of set bits.
            // Compute the repeat distance d, and set up a bitmask covering the basic
            // unit of repetition (i.e. a word with the bottom d bits set). Also, in all
            // of these cases the N bit of the output will be zero.
            let clz_a = a.leading_zeros();
            let clz_c = c.leading_zeros();
            let d = clz_a - clz_c;
            let mask = (1 << d) - 1;
            (d, clz_a, 0, mask)
        } else {
            (64, a.leading_zeros(), 1, u64::max_value())
        };

        // If the repeat period d is not a power of two, it can't be encoded.
        if !d.is_power_of_two() {
            return None;
        }

        if ((b.wrapping_sub(a)) & !mask) != 0 {
            // If the bit stretch (b - a) does not fit within the mask derived from the
            // repeat period, then fail.
            return None;
        }

        // The only possible option is b - a repeated every d bits. Now we're going to
        // actually construct the valid logical immediate derived from that
        // specification, and see if it equals our original input.
        //
        // To repeat a value every d bits, we multiply it by a number of the form
        // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
        // be derived using a table lookup on CLZ(d).
        const MULTIPLIERS: [u64; 6] = [
            0x0000000000000001,
            0x0000000100000001,
            0x0001000100010001,
            0x0101010101010101,
            0x1111111111111111,
            0x5555555555555555,
        ];
        let multiplier = MULTIPLIERS[(u64::from(d).leading_zeros() - 57) as usize];
        let candidate = b.wrapping_sub(a) * multiplier;

        if value != candidate {
            // The candidate pattern doesn't match our input value, so fail.
            return None;
        }

        // We have a match! This is a valid logical immediate, so now we have to
        // construct the bits and pieces of the instruction encoding that generates
        // it.

        // Count the set bits in our basic stretch. The special case of clz(0) == -1
        // makes the answer come out right for stretches that reach the very top of
        // the word (e.g. numbers like 0xffffc00000000000).
        let clz_b = if b == 0 {
            u32::max_value() // -1
        } else {
            b.leading_zeros()
        };
        let s = clz_a.wrapping_sub(clz_b);

        // Decide how many bits to rotate right by, to put the low bit of that basic
        // stretch in position a.
        let (s, r) = if inverted {
            // If we inverted the input right at the start of this function, here's
            // where we compensate: the number of set bits becomes the number of clear
            // bits, and the rotation count is based on position b rather than position
            // a (since b is the location of the 'lowest' 1 bit after inversion).
            // Need wrapping for when clz_b is max_value() (for when b == 0).
            (d - s, clz_b.wrapping_add(1) & (d - 1))
        } else {
            (s, (clz_a + 1) & (d - 1))
        };

        // Now we're done, except for having to encode the S output in such a way that
        // it gives both the number of set bits and the length of the repeated
        // segment. The s field is encoded like this:
        //
        //     imms    size        S
        //    ssssss    64    UInt(ssssss)
        //    0sssss    32    UInt(sssss)
        //    10ssss    16    UInt(ssss)
        //    110sss     8    UInt(sss)
        //    1110ss     4    UInt(ss)
        //    11110s     2    UInt(s)
        //
        // So we 'or' (2 * -d) with our computed s to form imms.
        let s = ((d * 2).wrapping_neg() | (s - 1)) & 0x3f;
        debug_assert!(u8::try_from(r).is_ok());
        debug_assert!(u8::try_from(s).is_ok());
        Some(ImmLogic {
            value: original_value,
            n: out_n != 0,
            r: r as u8,
            s: s as u8,
            size: operand_size,
        })
    }

    /// Returns bits ready for encoding: (N:1, R:6, S:6)
    pub fn enc_bits(&self) -> u32 {
        ((self.n as u32) << 12) | ((self.r as u32) << 6) | (self.s as u32)
    }

    /// Returns the value that this immediate represents.
    pub fn value(&self) -> u64 {
        self.value
    }

    /// Return an immediate for the bitwise-inverted value.
    pub fn invert(&self) -> ImmLogic {
        // For every ImmLogical immediate, the inverse can also be encoded.
        Self::maybe_from_u64(!self.value, self.size.to_ty()).unwrap()
    }

    /// This provides a safe(ish) way to avoid the costs of `maybe_from_u64` when we want to
    /// encode a constant that we know at compiler-build time.  It constructs an `ImmLogic` from
    /// the fields `n`, `r`, `s` and `size`, but in a debug build, checks that `value_to_check`
    /// corresponds to those four fields.  The intention is that, in a non-debug build, this
    /// reduces to something small enough that it will be a candidate for inlining.
    pub fn from_n_r_s(value_to_check: u64, n: bool, r: u8, s: u8, size: OperandSize) -> Self {
        // Construct it from the components we got given.
        let imml = Self {
            value: value_to_check,
            n,
            r,
            s,
            size,
        };

        // In debug mode, check that `n`/`r`/`s` are correct, given `value` and `size`.
        debug_assert!(match ImmLogic::maybe_from_u64(
            value_to_check,
            if size == OperandSize::Size64 {
                I64
            } else {
                I32
            }
        ) {
            None => false, // fail: `value` is unrepresentable
            Some(imml_check) => imml_check == imml,
        });

        imml
    }
}

/// An immediate for shift instructions.
#[derive(Clone, Debug)]
pub struct ImmShift {
    /// 6-bit shift amount.
    pub imm: u8,
}

impl ImmShift {
    /// Create an ImmShift from raw bits, if possible.
    pub fn maybe_from_u64(val: u64) -> Option<ImmShift> {
        if val < 64 {
            Some(ImmShift { imm: val as u8 })
        } else {
            None
        }
    }

    /// Get the immediate value.
    pub fn value(&self) -> u8 {
        self.imm
    }
}

/// A 16-bit immediate for a MOVZ instruction, with a {0,16,32,48}-bit shift.
#[derive(Clone, Copy, Debug)]
pub struct MoveWideConst {
    /// The value.
    pub bits: u16,
    /// Result is `bits` shifted 16*shift bits to the left.
    pub shift: u8,
}

impl MoveWideConst {
    /// Construct a MoveWideConst from an arbitrary 64-bit constant if possible.
    pub fn maybe_from_u64(value: u64) -> Option<MoveWideConst> {
        let mask0 = 0x0000_0000_0000_ffffu64;
        let mask1 = 0x0000_0000_ffff_0000u64;
        let mask2 = 0x0000_ffff_0000_0000u64;
        let mask3 = 0xffff_0000_0000_0000u64;

        if value == (value & mask0) {
            return Some(MoveWideConst {
                bits: (value & mask0) as u16,
                shift: 0,
            });
        }
        if value == (value & mask1) {
            return Some(MoveWideConst {
                bits: ((value >> 16) & mask0) as u16,
                shift: 1,
            });
        }
        if value == (value & mask2) {
            return Some(MoveWideConst {
                bits: ((value >> 32) & mask0) as u16,
                shift: 2,
            });
        }
        if value == (value & mask3) {
            return Some(MoveWideConst {
                bits: ((value >> 48) & mask0) as u16,
                shift: 3,
            });
        }
        None
    }

    pub fn maybe_with_shift(imm: u16, shift: u8) -> Option<MoveWideConst> {
        let shift_enc = shift / 16;
        if shift_enc > 3 {
            None
        } else {
            Some(MoveWideConst {
                bits: imm,
                shift: shift_enc,
            })
        }
    }

    /// Returns the value that this constant represents.
    pub fn value(&self) -> u64 {
        (self.bits as u64) << (16 * self.shift)
    }
}

/// Advanced SIMD modified immediate as used by MOVI/MVNI.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct ASIMDMovModImm {
    imm: u8,
    shift: u8,
    is_64bit: bool,
    shift_ones: bool,
}

impl ASIMDMovModImm {
    /// Construct an ASIMDMovModImm from an arbitrary 64-bit constant, if possible.
    /// Note that the bits in `value` outside of the range specified by `size` are
    /// ignored; for example, in the case of `ScalarSize::Size8` all bits above the
    /// lowest 8 are ignored.
    pub fn maybe_from_u64(value: u64, size: ScalarSize) -> Option<ASIMDMovModImm> {
        match size {
            ScalarSize::Size8 => Some(ASIMDMovModImm {
                imm: value as u8,
                shift: 0,
                is_64bit: false,
                shift_ones: false,
            }),
            ScalarSize::Size16 => {
                let value = value as u16;

                if value >> 8 == 0 {
                    Some(ASIMDMovModImm {
                        imm: value as u8,
                        shift: 0,
                        is_64bit: false,
                        shift_ones: false,
                    })
                } else if value as u8 == 0 {
                    Some(ASIMDMovModImm {
                        imm: (value >> 8) as u8,
                        shift: 8,
                        is_64bit: false,
                        shift_ones: false,
                    })
                } else {
                    None
                }
            }
            ScalarSize::Size32 => {
                let value = value as u32;

                // Value is of the form 0x00MMFFFF.
                if value & 0xFF00FFFF == 0x0000FFFF {
                    let imm = (value >> 16) as u8;

                    Some(ASIMDMovModImm {
                        imm,
                        shift: 16,
                        is_64bit: false,
                        shift_ones: true,
                    })
                // Value is of the form 0x0000MMFF.
                } else if value & 0xFFFF00FF == 0x000000FF {
                    let imm = (value >> 8) as u8;

                    Some(ASIMDMovModImm {
                        imm,
                        shift: 8,
                        is_64bit: false,
                        shift_ones: true,
                    })
                } else {
                    // Of the 4 bytes, at most one is non-zero.
                    for shift in (0..32).step_by(8) {
                        if value & (0xFF << shift) == value {
                            return Some(ASIMDMovModImm {
                                imm: (value >> shift) as u8,
                                shift,
                                is_64bit: false,
                                shift_ones: false,
                            });
                        }
                    }

                    None
                }
            }
            ScalarSize::Size64 => {
                let mut imm = 0u8;

                // Check if all bytes are either 0 or 0xFF.
                for i in 0..8 {
                    let b = (value >> (i * 8)) as u8;

                    if b == 0 || b == 0xFF {
                        imm |= (b & 1) << i;
                    } else {
                        return None;
                    }
                }

                Some(ASIMDMovModImm {
                    imm,
                    shift: 0,
                    is_64bit: true,
                    shift_ones: false,
                })
            }
            _ => None,
        }
    }

    /// Create a zero immediate of this format.
    pub fn zero(size: ScalarSize) -> Self {
        ASIMDMovModImm {
            imm: 0,
            shift: 0,
            is_64bit: size == ScalarSize::Size64,
            shift_ones: false,
        }
    }

    /// Returns the value that this immediate represents.
    pub fn value(&self) -> (u8, u32, bool) {
        (self.imm, self.shift as u32, self.shift_ones)
    }
}

/// Advanced SIMD modified immediate as used by the vector variant of FMOV.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct ASIMDFPModImm {
    imm: u8,
    is_64bit: bool,
}

impl ASIMDFPModImm {
    /// Construct an ASIMDFPModImm from an arbitrary 64-bit constant, if possible.
    pub fn maybe_from_u64(value: u64, size: ScalarSize) -> Option<ASIMDFPModImm> {
        // In all cases immediates are encoded as an 8-bit number 0b_abcdefgh;
        // let `D` be the inverse of the digit `d`.
        match size {
            ScalarSize::Size32 => {
                // In this case the representable immediates are 32-bit numbers of the form
                // 0b_aBbb_bbbc_defg_h000 shifted to the left by 16.
                let value = value as u32;
                let b0_5 = (value >> 19) & 0b111111;
                let b6 = (value >> 19) & (1 << 6);
                let b7 = (value >> 24) & (1 << 7);
                let imm = (b0_5 | b6 | b7) as u8;

                if value == Self::value32(imm) {
                    Some(ASIMDFPModImm {
                        imm,
                        is_64bit: false,
                    })
                } else {
                    None
                }
            }
            ScalarSize::Size64 => {
                // In this case the representable immediates are 64-bit numbers of the form
                // 0b_aBbb_bbbb_bbcd_efgh shifted to the left by 48.
                let b0_5 = (value >> 48) & 0b111111;
                let b6 = (value >> 48) & (1 << 6);
                let b7 = (value >> 56) & (1 << 7);
                let imm = (b0_5 | b6 | b7) as u8;

                if value == Self::value64(imm) {
                    Some(ASIMDFPModImm {
                        imm,
                        is_64bit: true,
                    })
                } else {
                    None
                }
            }
            _ => None,
        }
    }

    /// Returns bits ready for encoding.
    pub fn enc_bits(&self) -> u8 {
        self.imm
    }

    /// Returns the 32-bit value that corresponds to an 8-bit encoding.
    fn value32(imm: u8) -> u32 {
        let imm = imm as u32;
        let b0_5 = imm & 0b111111;
        let b6 = (imm >> 6) & 1;
        let b6_inv = b6 ^ 1;
        let b7 = (imm >> 7) & 1;

        b0_5 << 19 | (b6 * 0b11111) << 25 | b6_inv << 30 | b7 << 31
    }

    /// Returns the 64-bit value that corresponds to an 8-bit encoding.
    fn value64(imm: u8) -> u64 {
        let imm = imm as u64;
        let b0_5 = imm & 0b111111;
        let b6 = (imm >> 6) & 1;
        let b6_inv = b6 ^ 1;
        let b7 = (imm >> 7) & 1;

        b0_5 << 48 | (b6 * 0b11111111) << 54 | b6_inv << 62 | b7 << 63
    }
}

impl PrettyPrint for NZCV {
    fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
        let fmt = |c: char, v| if v { c.to_ascii_uppercase() } else { c };
        format!(
            "#{}{}{}{}",
            fmt('n', self.n),
            fmt('z', self.z),
            fmt('c', self.c),
            fmt('v', self.v)
        )
    }
}

impl PrettyPrint for UImm5 {
    fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
        format!("#{}", self.value)
    }
}

impl PrettyPrint for Imm12 {
    fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
        let shift = if self.shift12 { 12 } else { 0 };
        let value = u32::from(self.bits) << shift;
        format!("#{}", value)
    }
}

impl PrettyPrint for SImm7Scaled {
    fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
        format!("#{}", self.value)
    }
}

impl PrettyPrint for FPULeftShiftImm {
    fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
        format!("#{}", self.amount)
    }
}

impl PrettyPrint for FPURightShiftImm {
    fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
        format!("#{}", self.amount)
    }
}

impl PrettyPrint for SImm9 {
    fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
        format!("#{}", self.value)
    }
}

impl PrettyPrint for UImm12Scaled {
    fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
        format!("#{}", self.value)
    }
}

impl PrettyPrint for ImmLogic {
    fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
        format!("#{}", self.value())
    }
}

impl PrettyPrint for ImmShift {
    fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
        format!("#{}", self.imm)
    }
}

impl PrettyPrint for MoveWideConst {
    fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
        if self.shift == 0 {
            format!("#{}", self.bits)
        } else {
            format!("#{}, LSL #{}", self.bits, self.shift * 16)
        }
    }
}

impl PrettyPrint for ASIMDMovModImm {
    fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
        if self.is_64bit {
            debug_assert_eq!(self.shift, 0);

            let enc_imm = self.imm as i8;
            let mut imm = 0u64;

            for i in 0..8 {
                let b = (enc_imm >> i) & 1;

                imm |= (-b as u8 as u64) << (i * 8);
            }

            format!("#{}", imm)
        } else if self.shift == 0 {
            format!("#{}", self.imm)
        } else {
            let shift_type = if self.shift_ones { "MSL" } else { "LSL" };
            format!("#{}, {} #{}", self.imm, shift_type, self.shift)
        }
    }
}

impl PrettyPrint for ASIMDFPModImm {
    fn show_rru(&self, _mb_rru: Option<&RealRegUniverse>) -> String {
        if self.is_64bit {
            format!("#{}", f64::from_bits(Self::value64(self.imm)))
        } else {
            format!("#{}", f32::from_bits(Self::value32(self.imm)))
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn imm_logical_test() {
        assert_eq!(None, ImmLogic::maybe_from_u64(0, I64));
        assert_eq!(None, ImmLogic::maybe_from_u64(u64::max_value(), I64));

        assert_eq!(
            Some(ImmLogic {
                value: 1,
                n: true,
                r: 0,
                s: 0,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(1, I64)
        );

        assert_eq!(
            Some(ImmLogic {
                value: 2,
                n: true,
                r: 63,
                s: 0,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(2, I64)
        );

        assert_eq!(None, ImmLogic::maybe_from_u64(5, I64));

        assert_eq!(None, ImmLogic::maybe_from_u64(11, I64));

        assert_eq!(
            Some(ImmLogic {
                value: 248,
                n: true,
                r: 61,
                s: 4,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(248, I64)
        );

        assert_eq!(None, ImmLogic::maybe_from_u64(249, I64));

        assert_eq!(
            Some(ImmLogic {
                value: 1920,
                n: true,
                r: 57,
                s: 3,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(1920, I64)
        );

        assert_eq!(
            Some(ImmLogic {
                value: 0x7ffe,
                n: true,
                r: 63,
                s: 13,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(0x7ffe, I64)
        );

        assert_eq!(
            Some(ImmLogic {
                value: 0x30000,
                n: true,
                r: 48,
                s: 1,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(0x30000, I64)
        );

        assert_eq!(
            Some(ImmLogic {
                value: 0x100000,
                n: true,
                r: 44,
                s: 0,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(0x100000, I64)
        );

        assert_eq!(
            Some(ImmLogic {
                value: u64::max_value() - 1,
                n: true,
                r: 63,
                s: 62,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(u64::max_value() - 1, I64)
        );

        assert_eq!(
            Some(ImmLogic {
                value: 0xaaaaaaaaaaaaaaaa,
                n: false,
                r: 1,
                s: 60,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(0xaaaaaaaaaaaaaaaa, I64)
        );

        assert_eq!(
            Some(ImmLogic {
                value: 0x8181818181818181,
                n: false,
                r: 1,
                s: 49,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(0x8181818181818181, I64)
        );

        assert_eq!(
            Some(ImmLogic {
                value: 0xffc3ffc3ffc3ffc3,
                n: false,
                r: 10,
                s: 43,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(0xffc3ffc3ffc3ffc3, I64)
        );

        assert_eq!(
            Some(ImmLogic {
                value: 0x100000001,
                n: false,
                r: 0,
                s: 0,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(0x100000001, I64)
        );

        assert_eq!(
            Some(ImmLogic {
                value: 0x1111111111111111,
                n: false,
                r: 0,
                s: 56,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(0x1111111111111111, I64)
        );

        for n in 0..2 {
            let types = if n == 0 { vec![I64, I32] } else { vec![I64] };
            for s in 0..64 {
                for r in 0..64 {
                    let imm = get_logical_imm(n, s, r);
                    for &ty in &types {
                        match ImmLogic::maybe_from_u64(imm, ty) {
                            Some(ImmLogic { value, .. }) => {
                                assert_eq!(imm, value);
                                ImmLogic::maybe_from_u64(!value, ty).unwrap();
                            }
                            None => assert_eq!(0, imm),
                        };
                    }
                }
            }
        }
    }

    // Repeat a value that has `width` bits, across a 64-bit value.
    fn repeat(value: u64, width: u64) -> u64 {
        let mut result = value & ((1 << width) - 1);
        let mut i = width;
        while i < 64 {
            result |= result << i;
            i *= 2;
        }
        result
    }

    // Get the logical immediate, from the encoding N/R/S bits.
    fn get_logical_imm(n: u32, s: u32, r: u32) -> u64 {
        // An integer is constructed from the n, imm_s and imm_r bits according to
        // the following table:
        //
        //  N   imms    immr    size        S             R
        //  1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
        //  0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
        //  0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
        //  0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
        //  0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
        //  0  11110s  xxxxxr     2    UInt(s)       UInt(r)
        // (s bits must not be all set)
        //
        // A pattern is constructed of size bits, where the least significant S+1
        // bits are set. The pattern is rotated right by R, and repeated across a
        // 64-bit value.

        if n == 1 {
            if s == 0x3f {
                return 0;
            }
            let bits = (1u64 << (s + 1)) - 1;
            bits.rotate_right(r)
        } else {
            if (s >> 1) == 0x1f {
                return 0;
            }
            let mut width = 0x20;
            while width >= 0x2 {
                if (s & width) == 0 {
                    let mask = width - 1;
                    if (s & mask) == mask {
                        return 0;
                    }
                    let bits = (1u64 << ((s & mask) + 1)) - 1;
                    return repeat(bits.rotate_right(r & mask), width.into());
                }
                width >>= 1;
            }
            unreachable!();
        }
    }

    #[test]
    fn asimd_fp_mod_imm_test() {
        assert_eq!(None, ASIMDFPModImm::maybe_from_u64(0, ScalarSize::Size32));
        assert_eq!(
            None,
            ASIMDFPModImm::maybe_from_u64(0.013671875_f32.to_bits() as u64, ScalarSize::Size32)
        );
        assert_eq!(None, ASIMDFPModImm::maybe_from_u64(0, ScalarSize::Size64));
        assert_eq!(
            None,
            ASIMDFPModImm::maybe_from_u64(10000_f64.to_bits(), ScalarSize::Size64)
        );
    }

    #[test]
    fn asimd_mov_mod_imm_test() {
        assert_eq!(
            None,
            ASIMDMovModImm::maybe_from_u64(513, ScalarSize::Size16)
        );
        assert_eq!(
            None,
            ASIMDMovModImm::maybe_from_u64(4278190335, ScalarSize::Size32)
        );
        assert_eq!(
            None,
            ASIMDMovModImm::maybe_from_u64(8388608, ScalarSize::Size64)
        );

        assert_eq!(
            Some(ASIMDMovModImm {
                imm: 66,
                shift: 16,
                is_64bit: false,
                shift_ones: true,
            }),
            ASIMDMovModImm::maybe_from_u64(4390911, ScalarSize::Size32)
        );
    }
}