1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
use byteorder::{LittleEndian, WriteBytesExt};
use std::io::{self, Write};

use crate::color;
use crate::error::{ImageError, ImageResult, ParameterError, ParameterErrorKind};
use crate::image::ImageEncoder;

const BITMAPFILEHEADER_SIZE: u32 = 14;
const BITMAPINFOHEADER_SIZE: u32 = 40;
const BITMAPV4HEADER_SIZE: u32 = 108;

/// The representation of a BMP encoder.
pub struct BmpEncoder<'a, W: 'a> {
    writer: &'a mut W,
}

/// BMP Encoder
///
/// An alias of [`BmpEncoder`].
///
/// TODO: remove
///
/// [`BmpEncoder`]: struct.BmpEncoder.html
#[allow(dead_code)]
#[deprecated(note = "Use `BmpEncoder` instead")]
pub type BMPEncoder<'a, W> = BmpEncoder<'a, W>;

impl<'a, W: Write + 'a> BmpEncoder<'a, W> {
    /// Create a new encoder that writes its output to ```w```.
    pub fn new(w: &'a mut W) -> Self {
        BmpEncoder { writer: w }
    }

    /// Encodes the image ```image```
    /// that has dimensions ```width``` and ```height```
    /// and ```ColorType``` ```c```.
    pub fn encode(
        &mut self,
        image: &[u8],
        width: u32,
        height: u32,
        c: color::ColorType,
    ) -> ImageResult<()> {
        let bmp_header_size = BITMAPFILEHEADER_SIZE;

        let (dib_header_size, written_pixel_size, palette_color_count) = get_pixel_info(c)?;
        let row_pad_size = (4 - (width * written_pixel_size) % 4) % 4; // each row must be padded to a multiple of 4 bytes
        let image_size = width
            .checked_mul(height)
            .and_then(|v| v.checked_mul(written_pixel_size))
            .and_then(|v| v.checked_add(height * row_pad_size))
            .ok_or_else(|| {
                ImageError::Parameter(ParameterError::from_kind(
                    ParameterErrorKind::DimensionMismatch,
                ))
            })?;
        let palette_size = palette_color_count * 4; // all palette colors are BGRA
        let file_size = bmp_header_size + dib_header_size + palette_size + image_size;

        // write BMP header
        self.writer.write_u8(b'B')?;
        self.writer.write_u8(b'M')?;
        self.writer.write_u32::<LittleEndian>(file_size)?; // file size
        self.writer.write_u16::<LittleEndian>(0)?; // reserved 1
        self.writer.write_u16::<LittleEndian>(0)?; // reserved 2
        self.writer
            .write_u32::<LittleEndian>(bmp_header_size + dib_header_size + palette_size)?; // image data offset

        // write DIB header
        self.writer.write_u32::<LittleEndian>(dib_header_size)?;
        self.writer.write_i32::<LittleEndian>(width as i32)?;
        self.writer.write_i32::<LittleEndian>(height as i32)?;
        self.writer.write_u16::<LittleEndian>(1)?; // color planes
        self.writer
            .write_u16::<LittleEndian>((written_pixel_size * 8) as u16)?; // bits per pixel
        if dib_header_size >= BITMAPV4HEADER_SIZE {
            // Assume BGRA32
            self.writer.write_u32::<LittleEndian>(3)?; // compression method - bitfields
        } else {
            self.writer.write_u32::<LittleEndian>(0)?; // compression method - no compression
        }
        self.writer.write_u32::<LittleEndian>(image_size)?;
        self.writer.write_i32::<LittleEndian>(0)?; // horizontal ppm
        self.writer.write_i32::<LittleEndian>(0)?; // vertical ppm
        self.writer.write_u32::<LittleEndian>(palette_color_count)?;
        self.writer.write_u32::<LittleEndian>(0)?; // all colors are important
        if dib_header_size >= BITMAPV4HEADER_SIZE {
            // Assume BGRA32
            self.writer.write_u32::<LittleEndian>(0xff << 16)?; // red mask
            self.writer.write_u32::<LittleEndian>(0xff << 8)?; // green mask
            self.writer.write_u32::<LittleEndian>(0xff)?; // blue mask
            self.writer.write_u32::<LittleEndian>(0xff << 24)?; // alpha mask
            self.writer.write_u32::<LittleEndian>(0x73524742)?; // colorspace - sRGB

            // endpoints (3x3) and gamma (3)
            for _ in 0..12 {
                self.writer.write_u32::<LittleEndian>(0)?;
            }
        }

        // write image data
        match c {
            color::ColorType::Rgb8 => {
                self.encode_rgb(image, width, height, row_pad_size, 3)?
            }
            color::ColorType::Rgba8 => {
                self.encode_rgba(image, width, height, row_pad_size, 4)?
            }
            color::ColorType::L8 => {
                self.encode_gray(image, width, height, row_pad_size, 1)?
            }
            color::ColorType::La8 => {
                self.encode_gray(image, width, height, row_pad_size, 2)?
            }
            _ => {
                return Err(ImageError::IoError(io::Error::new(
                    io::ErrorKind::InvalidInput,
                    &get_unsupported_error_message(c)[..],
                )))
            }
        }

        Ok(())
    }

    fn encode_rgb(
        &mut self,
        image: &[u8],
        width: u32,
        height: u32,
        row_pad_size: u32,
        bytes_per_pixel: u32,
    ) -> io::Result<()> {
        let width = width as usize;
        let height = height as usize;
        let x_stride = bytes_per_pixel as usize;
        let y_stride = width * x_stride;
        for row in (0..height).rev() {
            // from the bottom up
            let row_start = row * y_stride;
            for px in image[row_start..][..y_stride].chunks_exact(x_stride) {
                let r = px[0];
                let g = px[1];
                let b = px[2];
                // written as BGR
                self.writer.write_all(&[b, g, r])?;
            }
            self.write_row_pad(row_pad_size)?;
        }

        Ok(())
    }

    fn encode_rgba(
        &mut self,
        image: &[u8],
        width: u32,
        height: u32,
        row_pad_size: u32,
        bytes_per_pixel: u32,
    ) -> io::Result<()> {
        let width = width as usize;
        let height = height as usize;
        let x_stride = bytes_per_pixel as usize;
        let y_stride = width * x_stride;
        for row in (0..height).rev() {
            // from the bottom up
            let row_start = row * y_stride;
            for px in image[row_start..][..y_stride].chunks_exact(x_stride) {
                let r = px[0];
                let g = px[1];
                let b = px[2];
                let a = px[3];
                // written as BGRA
                self.writer.write_all(&[b, g, r, a])?;
            }
            self.write_row_pad(row_pad_size)?;
        }

        Ok(())
    }

    fn encode_gray(
        &mut self,
        image: &[u8],
        width: u32,
        height: u32,
        row_pad_size: u32,
        bytes_per_pixel: u32,
    ) -> io::Result<()> {
        // write grayscale palette
        for val in 0u8..=255 {
            // each color is written as BGRA, where A is always 0 and since only grayscale is being written, B = G = R = index
            self.writer.write_all(&[val, val, val, 0])?;
        }

        // write image data
        let x_stride = bytes_per_pixel;
        let y_stride = width * x_stride;
        for row in (0..height).rev() {
            // from the bottom up
            let row_start = row * y_stride;
            for col in 0..width {
                let pixel_start = (row_start + (col * x_stride)) as usize;
                // color value is equal to the palette index
                self.writer.write_u8(image[pixel_start])?;
                // alpha is never written as it's not widely supported
            }

            self.write_row_pad(row_pad_size)?;
        }

        Ok(())
    }

    fn write_row_pad(&mut self, row_pad_size: u32) -> io::Result<()> {
        for _ in 0..row_pad_size {
            self.writer.write_u8(0)?;
        }

        Ok(())
    }
}

impl<'a, W: Write> ImageEncoder for BmpEncoder<'a, W> {
    fn write_image(
        mut self,
        buf: &[u8],
        width: u32,
        height: u32,
        color_type: color::ColorType,
    ) -> ImageResult<()> {
        self.encode(buf, width, height, color_type)
    }
}

fn get_unsupported_error_message(c: color::ColorType) -> String {
    format!(
        "Unsupported color type {:?}.  Supported types: RGB(8), RGBA(8), Gray(8), GrayA(8).",
        c
    )
}

/// Returns a tuple representing: (dib header size, written pixel size, palette color count).
fn get_pixel_info(c: color::ColorType) -> io::Result<(u32, u32, u32)> {
    let sizes = match c {
        color::ColorType::Rgb8 => (BITMAPINFOHEADER_SIZE, 3, 0),
        color::ColorType::Rgba8 => (BITMAPV4HEADER_SIZE, 4, 0),
        color::ColorType::L8 => (BITMAPINFOHEADER_SIZE, 1, 256),
        color::ColorType::La8 => (BITMAPINFOHEADER_SIZE, 1, 256),
        _ => {
            return Err(io::Error::new(
                io::ErrorKind::InvalidInput,
                &get_unsupported_error_message(c)[..],
            ))
        }
    };

    Ok(sizes)
}

#[cfg(test)]
mod tests {
    use super::super::BmpDecoder;
    use super::BmpEncoder;
    use crate::color::ColorType;
    use crate::image::ImageDecoder;
    use std::io::Cursor;

    fn round_trip_image(image: &[u8], width: u32, height: u32, c: ColorType) -> Vec<u8> {
        let mut encoded_data = Vec::new();
        {
            let mut encoder = BmpEncoder::new(&mut encoded_data);
            encoder
                .encode(&image, width, height, c)
                .expect("could not encode image");
        }

        let decoder = BmpDecoder::new(Cursor::new(&encoded_data)).expect("failed to decode");

        let mut buf = vec![0; decoder.total_bytes() as usize];
        decoder.read_image(&mut buf).expect("failed to decode");
        buf
    }

    #[test]
    fn round_trip_single_pixel_rgb() {
        let image = [255u8, 0, 0]; // single red pixel
        let decoded = round_trip_image(&image, 1, 1, ColorType::Rgb8);
        assert_eq!(3, decoded.len());
        assert_eq!(255, decoded[0]);
        assert_eq!(0, decoded[1]);
        assert_eq!(0, decoded[2]);
    }

    #[test]
    fn huge_files_return_error() {
        let mut encoded_data = Vec::new();
        let image = vec![0u8; 3 * 40_000 * 40_000]; // 40_000x40_000 pixels, 3 bytes per pixel, allocated on the heap
        let mut encoder = BmpEncoder::new(&mut encoded_data);
        let result = encoder.encode(&image, 40_000, 40_000, ColorType::Rgb8);
        assert!(result.is_err());
    }

    #[test]
    fn round_trip_single_pixel_rgba() {
        let image = [1, 2, 3, 4];
        let decoded = round_trip_image(&image, 1, 1, ColorType::Rgba8);
        assert_eq!(&decoded[..], &image[..]);
    }

    #[test]
    fn round_trip_3px_rgb() {
        let image = [0u8; 3 * 3 * 3]; // 3x3 pixels, 3 bytes per pixel
        let _decoded = round_trip_image(&image, 3, 3, ColorType::Rgb8);
    }

    #[test]
    fn round_trip_gray() {
        let image = [0u8, 1, 2]; // 3 pixels
        let decoded = round_trip_image(&image, 3, 1, ColorType::L8);
        // should be read back as 3 RGB pixels
        assert_eq!(9, decoded.len());
        assert_eq!(0, decoded[0]);
        assert_eq!(0, decoded[1]);
        assert_eq!(0, decoded[2]);
        assert_eq!(1, decoded[3]);
        assert_eq!(1, decoded[4]);
        assert_eq!(1, decoded[5]);
        assert_eq!(2, decoded[6]);
        assert_eq!(2, decoded[7]);
        assert_eq!(2, decoded[8]);
    }

    #[test]
    fn round_trip_graya() {
        let image = [0u8, 0, 1, 0, 2, 0]; // 3 pixels, each with an alpha channel
        let decoded = round_trip_image(&image, 1, 3, ColorType::La8);
        // should be read back as 3 RGB pixels
        assert_eq!(9, decoded.len());
        assert_eq!(0, decoded[0]);
        assert_eq!(0, decoded[1]);
        assert_eq!(0, decoded[2]);
        assert_eq!(1, decoded[3]);
        assert_eq!(1, decoded[4]);
        assert_eq!(1, decoded[5]);
        assert_eq!(2, decoded[6]);
        assert_eq!(2, decoded[7]);
        assert_eq!(2, decoded[8]);
    }
}