1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
#![warn(missing_docs)]
#![crate_name="itertools"]
#![cfg_attr(not(feature = "use_std"), no_std)]

//! Extra iterator adaptors, functions and macros.
//!
//! To extend [`Iterator`] with methods in this crate, import
//! the [`Itertools`] trait:
//!
//! ```
//! use itertools::Itertools;
//! ```
//!
//! Now, new methods like [`interleave`](Itertools::interleave)
//! are available on all iterators:
//!
//! ```
//! use itertools::Itertools;
//!
//! let it = (1..3).interleave(vec![-1, -2]);
//! itertools::assert_equal(it, vec![1, -1, 2, -2]);
//! ```
//!
//! Most iterator methods are also provided as functions (with the benefit
//! that they convert parameters using [`IntoIterator`]):
//!
//! ```
//! use itertools::interleave;
//!
//! for elt in interleave(&[1, 2, 3], &[2, 3, 4]) {
//!     /* loop body */
//! }
//! ```
//!
//! ## Crate Features
//!
//! - `use_std`
//!   - Enabled by default.
//!   - Disable to compile itertools using `#![no_std]`. This disables
//!     any items that depend on collections (like `group_by`, `unique`,
//!     `kmerge`, `join` and many more).
//!
//! ## Rust Version
//!
//! This version of itertools requires Rust 1.32 or later.
#![doc(html_root_url="https://docs.rs/itertools/0.8/")]

#[cfg(not(feature = "use_std"))]
extern crate core as std;

#[cfg(feature = "use_alloc")]
extern crate alloc;

#[cfg(feature = "use_alloc")]
use alloc::{
    string::String,
    vec::Vec,
};

pub use either::Either;

use core::borrow::Borrow;
#[cfg(feature = "use_std")]
use std::collections::HashMap;
use std::iter::{IntoIterator, once};
use std::cmp::Ordering;
use std::fmt;
#[cfg(feature = "use_std")]
use std::collections::HashSet;
#[cfg(feature = "use_std")]
use std::hash::Hash;
#[cfg(feature = "use_alloc")]
use std::fmt::Write;
#[cfg(feature = "use_alloc")]
type VecIntoIter<T> = alloc::vec::IntoIter<T>;
#[cfg(feature = "use_alloc")]
use std::iter::FromIterator;

#[macro_use]
mod impl_macros;

// for compatibility with no std and macros
#[doc(hidden)]
pub use std::iter as __std_iter;

/// The concrete iterator types.
pub mod structs {
    pub use crate::adaptors::{
        Dedup,
        DedupBy,
        DedupWithCount,
        DedupByWithCount,
        Interleave,
        InterleaveShortest,
        FilterMapOk,
        FilterOk,
        Product,
        PutBack,
        Batching,
        MapInto,
        MapOk,
        Merge,
        MergeBy,
        TakeWhileRef,
        WhileSome,
        Coalesce,
        TupleCombinations,
        Positions,
        Update,
    };
    #[allow(deprecated)]
    pub use crate::adaptors::{MapResults, Step};
    #[cfg(feature = "use_alloc")]
    pub use crate::adaptors::MultiProduct;
    #[cfg(feature = "use_alloc")]
    pub use crate::combinations::Combinations;
    #[cfg(feature = "use_alloc")]
    pub use crate::combinations_with_replacement::CombinationsWithReplacement;
    pub use crate::cons_tuples_impl::ConsTuples;
    pub use crate::exactly_one_err::ExactlyOneError;
    pub use crate::format::{Format, FormatWith};
    pub use crate::flatten_ok::FlattenOk;
    #[cfg(feature = "use_std")]
    pub use crate::grouping_map::{GroupingMap, GroupingMapBy};
    #[cfg(feature = "use_alloc")]
    pub use crate::groupbylazy::{IntoChunks, Chunk, Chunks, GroupBy, Group, Groups};
    pub use crate::intersperse::{Intersperse, IntersperseWith};
    #[cfg(feature = "use_alloc")]
    pub use crate::kmerge_impl::{KMerge, KMergeBy};
    pub use crate::merge_join::MergeJoinBy;
    #[cfg(feature = "use_alloc")]
    pub use crate::multipeek_impl::MultiPeek;
    #[cfg(feature = "use_alloc")]
    pub use crate::peek_nth::PeekNth;
    pub use crate::pad_tail::PadUsing;
    pub use crate::peeking_take_while::PeekingTakeWhile;
    #[cfg(feature = "use_alloc")]
    pub use crate::permutations::Permutations;
    pub use crate::process_results_impl::ProcessResults;
    #[cfg(feature = "use_alloc")]
    pub use crate::powerset::Powerset;
    #[cfg(feature = "use_alloc")]
    pub use crate::put_back_n_impl::PutBackN;
    #[cfg(feature = "use_alloc")]
    pub use crate::rciter_impl::RcIter;
    pub use crate::repeatn::RepeatN;
    #[allow(deprecated)]
    pub use crate::sources::{RepeatCall, Unfold, Iterate};
    #[cfg(feature = "use_alloc")]
    pub use crate::tee::Tee;
    pub use crate::tuple_impl::{TupleBuffer, TupleWindows, CircularTupleWindows, Tuples};
    #[cfg(feature = "use_std")]
    pub use crate::duplicates_impl::{Duplicates, DuplicatesBy};
    #[cfg(feature = "use_std")]
    pub use crate::unique_impl::{Unique, UniqueBy};
    pub use crate::with_position::WithPosition;
    pub use crate::zip_eq_impl::ZipEq;
    pub use crate::zip_longest::ZipLongest;
    pub use crate::ziptuple::Zip;
}

/// Traits helpful for using certain `Itertools` methods in generic contexts.
pub mod traits {
    pub use crate::tuple_impl::HomogeneousTuple;
}

#[allow(deprecated)]
pub use crate::structs::*;
pub use crate::concat_impl::concat;
pub use crate::cons_tuples_impl::cons_tuples;
pub use crate::diff::diff_with;
pub use crate::diff::Diff;
#[cfg(feature = "use_alloc")]
pub use crate::kmerge_impl::{kmerge_by};
pub use crate::minmax::MinMaxResult;
pub use crate::peeking_take_while::PeekingNext;
pub use crate::process_results_impl::process_results;
pub use crate::repeatn::repeat_n;
#[allow(deprecated)]
pub use crate::sources::{repeat_call, unfold, iterate};
pub use crate::with_position::Position;
pub use crate::unziptuple::{multiunzip, MultiUnzip};
pub use crate::ziptuple::multizip;
mod adaptors;
mod either_or_both;
pub use crate::either_or_both::EitherOrBoth;
#[doc(hidden)]
pub mod free;
#[doc(inline)]
pub use crate::free::*;
mod concat_impl;
mod cons_tuples_impl;
#[cfg(feature = "use_alloc")]
mod combinations;
#[cfg(feature = "use_alloc")]
mod combinations_with_replacement;
mod exactly_one_err;
mod diff;
mod flatten_ok;
mod format;
#[cfg(feature = "use_std")]
mod grouping_map;
#[cfg(feature = "use_alloc")]
mod group_map;
#[cfg(feature = "use_alloc")]
mod groupbylazy;
mod intersperse;
#[cfg(feature = "use_alloc")]
mod k_smallest;
#[cfg(feature = "use_alloc")]
mod kmerge_impl;
#[cfg(feature = "use_alloc")]
mod lazy_buffer;
mod merge_join;
mod minmax;
#[cfg(feature = "use_alloc")]
mod multipeek_impl;
mod pad_tail;
#[cfg(feature = "use_alloc")]
mod peek_nth;
mod peeking_take_while;
#[cfg(feature = "use_alloc")]
mod permutations;
#[cfg(feature = "use_alloc")]
mod powerset;
mod process_results_impl;
#[cfg(feature = "use_alloc")]
mod put_back_n_impl;
#[cfg(feature = "use_alloc")]
mod rciter_impl;
mod repeatn;
mod size_hint;
mod sources;
#[cfg(feature = "use_alloc")]
mod tee;
mod tuple_impl;
#[cfg(feature = "use_std")]
mod duplicates_impl;
#[cfg(feature = "use_std")]
mod unique_impl;
mod unziptuple;
mod with_position;
mod zip_eq_impl;
mod zip_longest;
mod ziptuple;

#[macro_export]
/// Create an iterator over the “cartesian product” of iterators.
///
/// Iterator element type is like `(A, B, ..., E)` if formed
/// from iterators `(I, J, ..., M)` with element types `I::Item = A`, `J::Item = B`, etc.
///
/// ```
/// # use itertools::iproduct;
/// #
/// # fn main() {
/// // Iterate over the coordinates of a 4 x 4 x 4 grid
/// // from (0, 0, 0), (0, 0, 1), .., (0, 1, 0), (0, 1, 1), .. etc until (3, 3, 3)
/// for (i, j, k) in iproduct!(0..4, 0..4, 0..4) {
///    // ..
/// }
/// # }
/// ```
macro_rules! iproduct {
    (@flatten $I:expr,) => (
        $I
    );
    (@flatten $I:expr, $J:expr, $($K:expr,)*) => (
        $crate::iproduct!(@flatten $crate::cons_tuples($crate::iproduct!($I, $J)), $($K,)*)
    );
    ($I:expr) => (
        $crate::__std_iter::IntoIterator::into_iter($I)
    );
    ($I:expr, $J:expr) => (
        $crate::Itertools::cartesian_product($crate::iproduct!($I), $crate::iproduct!($J))
    );
    ($I:expr, $J:expr, $($K:expr),+) => (
        $crate::iproduct!(@flatten $crate::iproduct!($I, $J), $($K,)+)
    );
}

#[macro_export]
/// Create an iterator running multiple iterators in lockstep.
///
/// The `izip!` iterator yields elements until any subiterator
/// returns `None`.
///
/// This is a version of the standard ``.zip()`` that's supporting more than
/// two iterators. The iterator element type is a tuple with one element
/// from each of the input iterators. Just like ``.zip()``, the iteration stops
/// when the shortest of the inputs reaches its end.
///
/// **Note:** The result of this macro is in the general case an iterator
/// composed of repeated `.zip()` and a `.map()`; it has an anonymous type.
/// The special cases of one and two arguments produce the equivalent of
/// `$a.into_iter()` and `$a.into_iter().zip($b)` respectively.
///
/// Prefer this macro `izip!()` over [`multizip`] for the performance benefits
/// of using the standard library `.zip()`.
///
/// ```
/// # use itertools::izip;
/// #
/// # fn main() {
///
/// // iterate over three sequences side-by-side
/// let mut results = [0, 0, 0, 0];
/// let inputs = [3, 7, 9, 6];
///
/// for (r, index, input) in izip!(&mut results, 0..10, &inputs) {
///     *r = index * 10 + input;
/// }
///
/// assert_eq!(results, [0 + 3, 10 + 7, 29, 36]);
/// # }
/// ```
macro_rules! izip {
    // @closure creates a tuple-flattening closure for .map() call. usage:
    // @closure partial_pattern => partial_tuple , rest , of , iterators
    // eg. izip!( @closure ((a, b), c) => (a, b, c) , dd , ee )
    ( @closure $p:pat => $tup:expr ) => {
        |$p| $tup
    };

    // The "b" identifier is a different identifier on each recursion level thanks to hygiene.
    ( @closure $p:pat => ( $($tup:tt)* ) , $_iter:expr $( , $tail:expr )* ) => {
        $crate::izip!(@closure ($p, b) => ( $($tup)*, b ) $( , $tail )*)
    };

    // unary
    ($first:expr $(,)*) => {
        $crate::__std_iter::IntoIterator::into_iter($first)
    };

    // binary
    ($first:expr, $second:expr $(,)*) => {
        $crate::izip!($first)
            .zip($second)
    };

    // n-ary where n > 2
    ( $first:expr $( , $rest:expr )* $(,)* ) => {
        $crate::izip!($first)
            $(
                .zip($rest)
            )*
            .map(
                $crate::izip!(@closure a => (a) $( , $rest )*)
            )
    };
}

#[macro_export]
/// [Chain][`chain`] zero or more iterators together into one sequence.
///
/// The comma-separated arguments must implement [`IntoIterator`].
/// The final argument may be followed by a trailing comma.
///
/// [`chain`]: Iterator::chain
///
/// # Examples
///
/// Empty invocations of `chain!` expand to an invocation of [`std::iter::empty`]:
/// ```
/// use std::iter;
/// use itertools::chain;
///
/// let _: iter::Empty<()> = chain!();
/// let _: iter::Empty<i8> = chain!();
/// ```
///
/// Invocations of `chain!` with one argument expand to [`arg.into_iter()`](IntoIterator):
/// ```
/// use std::{ops::Range, slice};
/// use itertools::chain;
/// let _: <Range<_> as IntoIterator>::IntoIter = chain!((2..6),); // trailing comma optional!
/// let _:     <&[_] as IntoIterator>::IntoIter = chain!(&[2, 3, 4]);
/// ```
///
/// Invocations of `chain!` with multiple arguments [`.into_iter()`](IntoIterator) each
/// argument, and then [`chain`] them together:
/// ```
/// use std::{iter::*, ops::Range, slice};
/// use itertools::{assert_equal, chain};
///
/// // e.g., this:
/// let with_macro:  Chain<Chain<Once<_>, Take<Repeat<_>>>, slice::Iter<_>> =
///     chain![once(&0), repeat(&1).take(2), &[2, 3, 5],];
///
/// // ...is equivalant to this:
/// let with_method: Chain<Chain<Once<_>, Take<Repeat<_>>>, slice::Iter<_>> =
///     once(&0)
///         .chain(repeat(&1).take(2))
///         .chain(&[2, 3, 5]);
///
/// assert_equal(with_macro, with_method);
/// ```
macro_rules! chain {
    () => {
        core::iter::empty()
    };
    ($first:expr $(, $rest:expr )* $(,)?) => {
        {
            let iter = core::iter::IntoIterator::into_iter($first);
            $(
                let iter =
                    core::iter::Iterator::chain(
                        iter,
                        core::iter::IntoIterator::into_iter($rest));
            )*
            iter
        }
    };
}

/// An [`Iterator`] blanket implementation that provides extra adaptors and
/// methods.
///
/// This trait defines a number of methods. They are divided into two groups:
///
/// * *Adaptors* take an iterator and parameter as input, and return
/// a new iterator value. These are listed first in the trait. An example
/// of an adaptor is [`.interleave()`](Itertools::interleave)
///
/// * *Regular methods* are those that don't return iterators and instead
/// return a regular value of some other kind.
/// [`.next_tuple()`](Itertools::next_tuple) is an example and the first regular
/// method in the list.
pub trait Itertools : Iterator {
    // adaptors

    /// Alternate elements from two iterators until both have run out.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// This iterator is *fused*.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let it = (1..7).interleave(vec![-1, -2]);
    /// itertools::assert_equal(it, vec![1, -1, 2, -2, 3, 4, 5, 6]);
    /// ```
    fn interleave<J>(self, other: J) -> Interleave<Self, J::IntoIter>
        where J: IntoIterator<Item = Self::Item>,
              Self: Sized
    {
        interleave(self, other)
    }

    /// Alternate elements from two iterators until at least one of them has run
    /// out.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let it = (1..7).interleave_shortest(vec![-1, -2]);
    /// itertools::assert_equal(it, vec![1, -1, 2, -2, 3]);
    /// ```
    fn interleave_shortest<J>(self, other: J) -> InterleaveShortest<Self, J::IntoIter>
        where J: IntoIterator<Item = Self::Item>,
              Self: Sized
    {
        adaptors::interleave_shortest(self, other.into_iter())
    }

    /// An iterator adaptor to insert a particular value
    /// between each element of the adapted iterator.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// This iterator is *fused*.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// itertools::assert_equal((0..3).intersperse(8), vec![0, 8, 1, 8, 2]);
    /// ```
    fn intersperse(self, element: Self::Item) -> Intersperse<Self>
        where Self: Sized,
              Self::Item: Clone
    {
        intersperse::intersperse(self, element)
    }

    /// An iterator adaptor to insert a particular value created by a function
    /// between each element of the adapted iterator.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// This iterator is *fused*.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let mut i = 10;
    /// itertools::assert_equal((0..3).intersperse_with(|| { i -= 1; i }), vec![0, 9, 1, 8, 2]);
    /// assert_eq!(i, 8);
    /// ```
    fn intersperse_with<F>(self, element: F) -> IntersperseWith<Self, F>
        where Self: Sized,
        F: FnMut() -> Self::Item
    {
        intersperse::intersperse_with(self, element)
    }

    /// Create an iterator which iterates over both this and the specified
    /// iterator simultaneously, yielding pairs of two optional elements.
    ///
    /// This iterator is *fused*.
    ///
    /// As long as neither input iterator is exhausted yet, it yields two values
    /// via `EitherOrBoth::Both`.
    ///
    /// When the parameter iterator is exhausted, it only yields a value from the
    /// `self` iterator via `EitherOrBoth::Left`.
    ///
    /// When the `self` iterator is exhausted, it only yields a value from the
    /// parameter iterator via `EitherOrBoth::Right`.
    ///
    /// When both iterators return `None`, all further invocations of `.next()`
    /// will return `None`.
    ///
    /// Iterator element type is
    /// [`EitherOrBoth<Self::Item, J::Item>`](EitherOrBoth).
    ///
    /// ```rust
    /// use itertools::EitherOrBoth::{Both, Right};
    /// use itertools::Itertools;
    /// let it = (0..1).zip_longest(1..3);
    /// itertools::assert_equal(it, vec![Both(0, 1), Right(2)]);
    /// ```
    #[inline]
    fn zip_longest<J>(self, other: J) -> ZipLongest<Self, J::IntoIter>
        where J: IntoIterator,
              Self: Sized
    {
        zip_longest::zip_longest(self, other.into_iter())
    }

    /// Create an iterator which iterates over both this and the specified
    /// iterator simultaneously, yielding pairs of elements.
    ///
    /// **Panics** if the iterators reach an end and they are not of equal
    /// lengths.
    #[inline]
    fn zip_eq<J>(self, other: J) -> ZipEq<Self, J::IntoIter>
        where J: IntoIterator,
              Self: Sized
    {
        zip_eq(self, other)
    }

    /// A “meta iterator adaptor”. Its closure receives a reference to the
    /// iterator and may pick off as many elements as it likes, to produce the
    /// next iterator element.
    ///
    /// Iterator element type is `B`.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// // An adaptor that gathers elements in pairs
    /// let pit = (0..4).batching(|it| {
    ///            match it.next() {
    ///                None => None,
    ///                Some(x) => match it.next() {
    ///                    None => None,
    ///                    Some(y) => Some((x, y)),
    ///                }
    ///            }
    ///        });
    ///
    /// itertools::assert_equal(pit, vec![(0, 1), (2, 3)]);
    /// ```
    ///
    fn batching<B, F>(self, f: F) -> Batching<Self, F>
        where F: FnMut(&mut Self) -> Option<B>,
              Self: Sized
    {
        adaptors::batching(self, f)
    }

    /// Return an *iterable* that can group iterator elements.
    /// Consecutive elements that map to the same key (“runs”), are assigned
    /// to the same group.
    ///
    /// `GroupBy` is the storage for the lazy grouping operation.
    ///
    /// If the groups are consumed in order, or if each group's iterator is
    /// dropped without keeping it around, then `GroupBy` uses no
    /// allocations.  It needs allocations only if several group iterators
    /// are alive at the same time.
    ///
    /// This type implements [`IntoIterator`] (it is **not** an iterator
    /// itself), because the group iterators need to borrow from this
    /// value. It should be stored in a local variable or temporary and
    /// iterated.
    ///
    /// Iterator element type is `(K, Group)`: the group's key and the
    /// group iterator.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// // group data into runs of larger than zero or not.
    /// let data = vec![1, 3, -2, -2, 1, 0, 1, 2];
    /// // groups:     |---->|------>|--------->|
    ///
    /// // Note: The `&` is significant here, `GroupBy` is iterable
    /// // only by reference. You can also call `.into_iter()` explicitly.
    /// let mut data_grouped = Vec::new();
    /// for (key, group) in &data.into_iter().group_by(|elt| *elt >= 0) {
    ///     data_grouped.push((key, group.collect()));
    /// }
    /// assert_eq!(data_grouped, vec![(true, vec![1, 3]), (false, vec![-2, -2]), (true, vec![1, 0, 1, 2])]);
    /// ```
    #[cfg(feature = "use_alloc")]
    fn group_by<K, F>(self, key: F) -> GroupBy<K, Self, F>
        where Self: Sized,
              F: FnMut(&Self::Item) -> K,
              K: PartialEq,
    {
        groupbylazy::new(self, key)
    }

    /// Return an *iterable* that can chunk the iterator.
    ///
    /// Yield subiterators (chunks) that each yield a fixed number elements,
    /// determined by `size`. The last chunk will be shorter if there aren't
    /// enough elements.
    ///
    /// `IntoChunks` is based on `GroupBy`: it is iterable (implements
    /// `IntoIterator`, **not** `Iterator`), and it only buffers if several
    /// chunk iterators are alive at the same time.
    ///
    /// Iterator element type is `Chunk`, each chunk's iterator.
    ///
    /// **Panics** if `size` is 0.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = vec![1, 1, 2, -2, 6, 0, 3, 1];
    /// //chunk size=3 |------->|-------->|--->|
    ///
    /// // Note: The `&` is significant here, `IntoChunks` is iterable
    /// // only by reference. You can also call `.into_iter()` explicitly.
    /// for chunk in &data.into_iter().chunks(3) {
    ///     // Check that the sum of each chunk is 4.
    ///     assert_eq!(4, chunk.sum());
    /// }
    /// ```
    #[cfg(feature = "use_alloc")]
    fn chunks(self, size: usize) -> IntoChunks<Self>
        where Self: Sized,
    {
        assert!(size != 0);
        groupbylazy::new_chunks(self, size)
    }

    /// Return an iterator over all contiguous windows producing tuples of
    /// a specific size (up to 12).
    ///
    /// `tuple_windows` clones the iterator elements so that they can be
    /// part of successive windows, this makes it most suited for iterators
    /// of references and other values that are cheap to copy.
    ///
    /// ```
    /// use itertools::Itertools;
    /// let mut v = Vec::new();
    ///
    /// // pairwise iteration
    /// for (a, b) in (1..5).tuple_windows() {
    ///     v.push((a, b));
    /// }
    /// assert_eq!(v, vec![(1, 2), (2, 3), (3, 4)]);
    ///
    /// let mut it = (1..5).tuple_windows();
    /// assert_eq!(Some((1, 2, 3)), it.next());
    /// assert_eq!(Some((2, 3, 4)), it.next());
    /// assert_eq!(None, it.next());
    ///
    /// // this requires a type hint
    /// let it = (1..5).tuple_windows::<(_, _, _)>();
    /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]);
    ///
    /// // you can also specify the complete type
    /// use itertools::TupleWindows;
    /// use std::ops::Range;
    ///
    /// let it: TupleWindows<Range<u32>, (u32, u32, u32)> = (1..5).tuple_windows();
    /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]);
    /// ```
    fn tuple_windows<T>(self) -> TupleWindows<Self, T>
        where Self: Sized + Iterator<Item = T::Item>,
              T: traits::HomogeneousTuple,
              T::Item: Clone
    {
        tuple_impl::tuple_windows(self)
    }

    /// Return an iterator over all windows, wrapping back to the first
    /// elements when the window would otherwise exceed the length of the
    /// iterator, producing tuples of a specific size (up to 12).
    ///
    /// `circular_tuple_windows` clones the iterator elements so that they can be
    /// part of successive windows, this makes it most suited for iterators
    /// of references and other values that are cheap to copy.
    ///
    /// ```
    /// use itertools::Itertools;
    /// let mut v = Vec::new();
    /// for (a, b) in (1..5).circular_tuple_windows() {
    ///     v.push((a, b));
    /// }
    /// assert_eq!(v, vec![(1, 2), (2, 3), (3, 4), (4, 1)]);
    ///
    /// let mut it = (1..5).circular_tuple_windows();
    /// assert_eq!(Some((1, 2, 3)), it.next());
    /// assert_eq!(Some((2, 3, 4)), it.next());
    /// assert_eq!(Some((3, 4, 1)), it.next());
    /// assert_eq!(Some((4, 1, 2)), it.next());
    /// assert_eq!(None, it.next());
    ///
    /// // this requires a type hint
    /// let it = (1..5).circular_tuple_windows::<(_, _, _)>();
    /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4), (3, 4, 1), (4, 1, 2)]);
    /// ```
    fn circular_tuple_windows<T>(self) -> CircularTupleWindows<Self, T>
        where Self: Sized + Clone + Iterator<Item = T::Item> + ExactSizeIterator,
              T: tuple_impl::TupleCollect + Clone,
              T::Item: Clone
    {
        tuple_impl::circular_tuple_windows(self)
    }
    /// Return an iterator that groups the items in tuples of a specific size
    /// (up to 12).
    ///
    /// See also the method [`.next_tuple()`](Itertools::next_tuple).
    ///
    /// ```
    /// use itertools::Itertools;
    /// let mut v = Vec::new();
    /// for (a, b) in (1..5).tuples() {
    ///     v.push((a, b));
    /// }
    /// assert_eq!(v, vec![(1, 2), (3, 4)]);
    ///
    /// let mut it = (1..7).tuples();
    /// assert_eq!(Some((1, 2, 3)), it.next());
    /// assert_eq!(Some((4, 5, 6)), it.next());
    /// assert_eq!(None, it.next());
    ///
    /// // this requires a type hint
    /// let it = (1..7).tuples::<(_, _, _)>();
    /// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]);
    ///
    /// // you can also specify the complete type
    /// use itertools::Tuples;
    /// use std::ops::Range;
    ///
    /// let it: Tuples<Range<u32>, (u32, u32, u32)> = (1..7).tuples();
    /// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]);
    /// ```
    ///
    /// See also [`Tuples::into_buffer`].
    fn tuples<T>(self) -> Tuples<Self, T>
        where Self: Sized + Iterator<Item = T::Item>,
              T: traits::HomogeneousTuple
    {
        tuple_impl::tuples(self)
    }

    /// Split into an iterator pair that both yield all elements from
    /// the original iterator.
    ///
    /// **Note:** If the iterator is clonable, prefer using that instead
    /// of using this method. It is likely to be more efficient.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// ```
    /// use itertools::Itertools;
    /// let xs = vec![0, 1, 2, 3];
    ///
    /// let (mut t1, t2) = xs.into_iter().tee();
    /// itertools::assert_equal(t1.next(), Some(0));
    /// itertools::assert_equal(t2, 0..4);
    /// itertools::assert_equal(t1, 1..4);
    /// ```
    #[cfg(feature = "use_alloc")]
    fn tee(self) -> (Tee<Self>, Tee<Self>)
        where Self: Sized,
              Self::Item: Clone
    {
        tee::new(self)
    }

    /// Return an iterator adaptor that steps `n` elements in the base iterator
    /// for each iteration.
    ///
    /// The iterator steps by yielding the next element from the base iterator,
    /// then skipping forward `n - 1` elements.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// **Panics** if the step is 0.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let it = (0..8).step(3);
    /// itertools::assert_equal(it, vec![0, 3, 6]);
    /// ```
    #[deprecated(note="Use std .step_by() instead", since="0.8.0")]
    #[allow(deprecated)]
    fn step(self, n: usize) -> Step<Self>
        where Self: Sized
    {
        adaptors::step(self, n)
    }

    /// Convert each item of the iterator using the [`Into`] trait.
    ///
    /// ```rust
    /// use itertools::Itertools;
    ///
    /// (1i32..42i32).map_into::<f64>().collect_vec();
    /// ```
    fn map_into<R>(self) -> MapInto<Self, R>
        where Self: Sized,
              Self::Item: Into<R>,
    {
        adaptors::map_into(self)
    }

    /// See [`.map_ok()`](Itertools::map_ok).
    #[deprecated(note="Use .map_ok() instead", since="0.10.0")]
    fn map_results<F, T, U, E>(self, f: F) -> MapOk<Self, F>
        where Self: Iterator<Item = Result<T, E>> + Sized,
              F: FnMut(T) -> U,
    {
        self.map_ok(f)
    }

    /// Return an iterator adaptor that applies the provided closure
    /// to every `Result::Ok` value. `Result::Err` values are
    /// unchanged.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let input = vec![Ok(41), Err(false), Ok(11)];
    /// let it = input.into_iter().map_ok(|i| i + 1);
    /// itertools::assert_equal(it, vec![Ok(42), Err(false), Ok(12)]);
    /// ```
    fn map_ok<F, T, U, E>(self, f: F) -> MapOk<Self, F>
        where Self: Iterator<Item = Result<T, E>> + Sized,
              F: FnMut(T) -> U,
    {
        adaptors::map_ok(self, f)
    }

    /// Return an iterator adaptor that filters every `Result::Ok`
    /// value with the provided closure. `Result::Err` values are
    /// unchanged.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let input = vec![Ok(22), Err(false), Ok(11)];
    /// let it = input.into_iter().filter_ok(|&i| i > 20);
    /// itertools::assert_equal(it, vec![Ok(22), Err(false)]);
    /// ```
    fn filter_ok<F, T, E>(self, f: F) -> FilterOk<Self, F>
        where Self: Iterator<Item = Result<T, E>> + Sized,
              F: FnMut(&T) -> bool,
    {
        adaptors::filter_ok(self, f)
    }

    /// Return an iterator adaptor that filters and transforms every
    /// `Result::Ok` value with the provided closure. `Result::Err`
    /// values are unchanged.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let input = vec![Ok(22), Err(false), Ok(11)];
    /// let it = input.into_iter().filter_map_ok(|i| if i > 20 { Some(i * 2) } else { None });
    /// itertools::assert_equal(it, vec![Ok(44), Err(false)]);
    /// ```
    fn filter_map_ok<F, T, U, E>(self, f: F) -> FilterMapOk<Self, F>
        where Self: Iterator<Item = Result<T, E>> + Sized,
              F: FnMut(T) -> Option<U>,
    {
        adaptors::filter_map_ok(self, f)
    }

    /// Return an iterator adaptor that flattens every `Result::Ok` value into
    /// a series of `Result::Ok` values. `Result::Err` values are unchanged.
    /// 
    /// This is useful when you have some common error type for your crate and
    /// need to propogate it upwards, but the `Result::Ok` case needs to be flattened.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let input = vec![Ok(0..2), Err(false), Ok(2..4)];
    /// let it = input.iter().cloned().flatten_ok();
    /// itertools::assert_equal(it.clone(), vec![Ok(0), Ok(1), Err(false), Ok(2), Ok(3)]);
    /// 
    /// // This can also be used to propogate errors when collecting.
    /// let output_result: Result<Vec<i32>, bool> = it.collect();
    /// assert_eq!(output_result, Err(false));
    /// ```
    fn flatten_ok<T, E>(self) -> FlattenOk<Self, T, E>
        where Self: Iterator<Item = Result<T, E>> + Sized,
              T: IntoIterator
    {
        flatten_ok::flatten_ok(self)
    }

    /// Return an iterator adaptor that merges the two base iterators in
    /// ascending order.  If both base iterators are sorted (ascending), the
    /// result is sorted.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let a = (0..11).step(3);
    /// let b = (0..11).step(5);
    /// let it = a.merge(b);
    /// itertools::assert_equal(it, vec![0, 0, 3, 5, 6, 9, 10]);
    /// ```
    fn merge<J>(self, other: J) -> Merge<Self, J::IntoIter>
        where Self: Sized,
              Self::Item: PartialOrd,
              J: IntoIterator<Item = Self::Item>
    {
        merge(self, other)
    }

    /// Return an iterator adaptor that merges the two base iterators in order.
    /// This is much like [`.merge()`](Itertools::merge) but allows for a custom ordering.
    ///
    /// This can be especially useful for sequences of tuples.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let a = (0..).zip("bc".chars());
    /// let b = (0..).zip("ad".chars());
    /// let it = a.merge_by(b, |x, y| x.1 <= y.1);
    /// itertools::assert_equal(it, vec![(0, 'a'), (0, 'b'), (1, 'c'), (1, 'd')]);
    /// ```

    fn merge_by<J, F>(self, other: J, is_first: F) -> MergeBy<Self, J::IntoIter, F>
        where Self: Sized,
              J: IntoIterator<Item = Self::Item>,
              F: FnMut(&Self::Item, &Self::Item) -> bool
    {
        adaptors::merge_by_new(self, other.into_iter(), is_first)
    }

    /// Create an iterator that merges items from both this and the specified
    /// iterator in ascending order.
    ///
    /// It chooses whether to pair elements based on the `Ordering` returned by the
    /// specified compare function. At any point, inspecting the tip of the
    /// iterators `I` and `J` as items `i` of type `I::Item` and `j` of type
    /// `J::Item` respectively, the resulting iterator will:
    ///
    /// - Emit `EitherOrBoth::Left(i)` when `i < j`,
    ///   and remove `i` from its source iterator
    /// - Emit `EitherOrBoth::Right(j)` when `i > j`,
    ///   and remove `j` from its source iterator
    /// - Emit `EitherOrBoth::Both(i, j)` when  `i == j`,
    ///   and remove both `i` and `j` from their respective source iterators
    ///
    /// ```
    /// use itertools::Itertools;
    /// use itertools::EitherOrBoth::{Left, Right, Both};
    ///
    /// let multiples_of_2 = (0..10).step(2);
    /// let multiples_of_3 = (0..10).step(3);
    ///
    /// itertools::assert_equal(
    ///     multiples_of_2.merge_join_by(multiples_of_3, |i, j| i.cmp(j)),
    ///     vec![Both(0, 0), Left(2), Right(3), Left(4), Both(6, 6), Left(8), Right(9)]
    /// );
    /// ```
    #[inline]
    fn merge_join_by<J, F>(self, other: J, cmp_fn: F) -> MergeJoinBy<Self, J::IntoIter, F>
        where J: IntoIterator,
              F: FnMut(&Self::Item, &J::Item) -> std::cmp::Ordering,
              Self: Sized
    {
        merge_join_by(self, other, cmp_fn)
    }

    /// Return an iterator adaptor that flattens an iterator of iterators by
    /// merging them in ascending order.
    ///
    /// If all base iterators are sorted (ascending), the result is sorted.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let a = (0..6).step(3);
    /// let b = (1..6).step(3);
    /// let c = (2..6).step(3);
    /// let it = vec![a, b, c].into_iter().kmerge();
    /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5]);
    /// ```
    #[cfg(feature = "use_alloc")]
    fn kmerge(self) -> KMerge<<Self::Item as IntoIterator>::IntoIter>
        where Self: Sized,
              Self::Item: IntoIterator,
              <Self::Item as IntoIterator>::Item: PartialOrd,
    {
        kmerge(self)
    }

    /// Return an iterator adaptor that flattens an iterator of iterators by
    /// merging them according to the given closure.
    ///
    /// The closure `first` is called with two elements *a*, *b* and should
    /// return `true` if *a* is ordered before *b*.
    ///
    /// If all base iterators are sorted according to `first`, the result is
    /// sorted.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let a = vec![-1f64, 2., 3., -5., 6., -7.];
    /// let b = vec![0., 2., -4.];
    /// let mut it = vec![a, b].into_iter().kmerge_by(|a, b| a.abs() < b.abs());
    /// assert_eq!(it.next(), Some(0.));
    /// assert_eq!(it.last(), Some(-7.));
    /// ```
    #[cfg(feature = "use_alloc")]
    fn kmerge_by<F>(self, first: F)
        -> KMergeBy<<Self::Item as IntoIterator>::IntoIter, F>
        where Self: Sized,
              Self::Item: IntoIterator,
              F: FnMut(&<Self::Item as IntoIterator>::Item,
                       &<Self::Item as IntoIterator>::Item) -> bool
    {
        kmerge_by(self, first)
    }

    /// Return an iterator adaptor that iterates over the cartesian product of
    /// the element sets of two iterators `self` and `J`.
    ///
    /// Iterator element type is `(Self::Item, J::Item)`.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let it = (0..2).cartesian_product("αβ".chars());
    /// itertools::assert_equal(it, vec![(0, 'α'), (0, 'β'), (1, 'α'), (1, 'β')]);
    /// ```
    fn cartesian_product<J>(self, other: J) -> Product<Self, J::IntoIter>
        where Self: Sized,
              Self::Item: Clone,
              J: IntoIterator,
              J::IntoIter: Clone
    {
        adaptors::cartesian_product(self, other.into_iter())
    }

    /// Return an iterator adaptor that iterates over the cartesian product of
    /// all subiterators returned by meta-iterator `self`.
    ///
    /// All provided iterators must yield the same `Item` type. To generate
    /// the product of iterators yielding multiple types, use the
    /// [`iproduct`] macro instead.
    ///
    ///
    /// The iterator element type is `Vec<T>`, where `T` is the iterator element
    /// of the subiterators.
    ///
    /// ```
    /// use itertools::Itertools;
    /// let mut multi_prod = (0..3).map(|i| (i * 2)..(i * 2 + 2))
    ///     .multi_cartesian_product();
    /// assert_eq!(multi_prod.next(), Some(vec![0, 2, 4]));
    /// assert_eq!(multi_prod.next(), Some(vec![0, 2, 5]));
    /// assert_eq!(multi_prod.next(), Some(vec![0, 3, 4]));
    /// assert_eq!(multi_prod.next(), Some(vec![0, 3, 5]));
    /// assert_eq!(multi_prod.next(), Some(vec![1, 2, 4]));
    /// assert_eq!(multi_prod.next(), Some(vec![1, 2, 5]));
    /// assert_eq!(multi_prod.next(), Some(vec![1, 3, 4]));
    /// assert_eq!(multi_prod.next(), Some(vec![1, 3, 5]));
    /// assert_eq!(multi_prod.next(), None);
    /// ```
    #[cfg(feature = "use_alloc")]
    fn multi_cartesian_product(self) -> MultiProduct<<Self::Item as IntoIterator>::IntoIter>
        where Self: Iterator + Sized,
              Self::Item: IntoIterator,
              <Self::Item as IntoIterator>::IntoIter: Clone,
              <Self::Item as IntoIterator>::Item: Clone
    {
        adaptors::multi_cartesian_product(self)
    }

    /// Return an iterator adaptor that uses the passed-in closure to
    /// optionally merge together consecutive elements.
    ///
    /// The closure `f` is passed two elements, `previous` and `current` and may
    /// return either (1) `Ok(combined)` to merge the two values or
    /// (2) `Err((previous', current'))` to indicate they can't be merged.
    /// In (2), the value `previous'` is emitted by the iterator.
    /// Either (1) `combined` or (2) `current'` becomes the previous value
    /// when coalesce continues with the next pair of elements to merge. The
    /// value that remains at the end is also emitted by the iterator.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// This iterator is *fused*.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// // sum same-sign runs together
    /// let data = vec![-1., -2., -3., 3., 1., 0., -1.];
    /// itertools::assert_equal(data.into_iter().coalesce(|x, y|
    ///         if (x >= 0.) == (y >= 0.) {
    ///             Ok(x + y)
    ///         } else {
    ///             Err((x, y))
    ///         }),
    ///         vec![-6., 4., -1.]);
    /// ```
    fn coalesce<F>(self, f: F) -> Coalesce<Self, F>
        where Self: Sized,
              F: FnMut(Self::Item, Self::Item)
                       -> Result<Self::Item, (Self::Item, Self::Item)>
    {
        adaptors::coalesce(self, f)
    }

    /// Remove duplicates from sections of consecutive identical elements.
    /// If the iterator is sorted, all elements will be unique.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// This iterator is *fused*.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = vec![1., 1., 2., 3., 3., 2., 2.];
    /// itertools::assert_equal(data.into_iter().dedup(),
    ///                         vec![1., 2., 3., 2.]);
    /// ```
    fn dedup(self) -> Dedup<Self>
        where Self: Sized,
              Self::Item: PartialEq,
    {
        adaptors::dedup(self)
    }

    /// Remove duplicates from sections of consecutive identical elements,
    /// determining equality using a comparison function.
    /// If the iterator is sorted, all elements will be unique.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// This iterator is *fused*.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = vec![(0, 1.), (1, 1.), (0, 2.), (0, 3.), (1, 3.), (1, 2.), (2, 2.)];
    /// itertools::assert_equal(data.into_iter().dedup_by(|x, y| x.1 == y.1),
    ///                         vec![(0, 1.), (0, 2.), (0, 3.), (1, 2.)]);
    /// ```
    fn dedup_by<Cmp>(self, cmp: Cmp) -> DedupBy<Self, Cmp>
        where Self: Sized,
              Cmp: FnMut(&Self::Item, &Self::Item)->bool,
    {
        adaptors::dedup_by(self, cmp)
    }

    /// Remove duplicates from sections of consecutive identical elements, while keeping a count of
    /// how many repeated elements were present.
    /// If the iterator is sorted, all elements will be unique.
    ///
    /// Iterator element type is `(usize, Self::Item)`.
    ///
    /// This iterator is *fused*.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = vec!['a', 'a', 'b', 'c', 'c', 'b', 'b'];
    /// itertools::assert_equal(data.into_iter().dedup_with_count(),
    ///                         vec![(2, 'a'), (1, 'b'), (2, 'c'), (2, 'b')]);
    /// ```
    fn dedup_with_count(self) -> DedupWithCount<Self>
    where
        Self: Sized,
    {
        adaptors::dedup_with_count(self)
    }

    /// Remove duplicates from sections of consecutive identical elements, while keeping a count of
    /// how many repeated elements were present.
    /// This will determine equality using a comparison function.
    /// If the iterator is sorted, all elements will be unique.
    ///
    /// Iterator element type is `(usize, Self::Item)`.
    ///
    /// This iterator is *fused*.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = vec![(0, 'a'), (1, 'a'), (0, 'b'), (0, 'c'), (1, 'c'), (1, 'b'), (2, 'b')];
    /// itertools::assert_equal(data.into_iter().dedup_by_with_count(|x, y| x.1 == y.1),
    ///                         vec![(2, (0, 'a')), (1, (0, 'b')), (2, (0, 'c')), (2, (1, 'b'))]);
    /// ```
    fn dedup_by_with_count<Cmp>(self, cmp: Cmp) -> DedupByWithCount<Self, Cmp>
    where
        Self: Sized,
        Cmp: FnMut(&Self::Item, &Self::Item) -> bool,
    {
        adaptors::dedup_by_with_count(self, cmp)
    }

    /// Return an iterator adaptor that produces elements that appear more than once during the
    /// iteration. Duplicates are detected using hash and equality.
    ///
    /// The iterator is stable, returning the duplicate items in the order in which they occur in
    /// the adapted iterator. Each duplicate item is returned exactly once. If an item appears more
    /// than twice, the second item is the item retained and the rest are discarded.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = vec![10, 20, 30, 20, 40, 10, 50];
    /// itertools::assert_equal(data.into_iter().duplicates(),
    ///                         vec![20, 10]);
    /// ```
    #[cfg(feature = "use_std")]
    fn duplicates(self) -> Duplicates<Self>
        where Self: Sized,
              Self::Item: Eq + Hash
    {
        duplicates_impl::duplicates(self)
    }

    /// Return an iterator adaptor that produces elements that appear more than once during the
    /// iteration. Duplicates are detected using hash and equality.
    ///
    /// Duplicates are detected by comparing the key they map to with the keying function `f` by
    /// hash and equality. The keys are stored in a hash map in the iterator.
    ///
    /// The iterator is stable, returning the duplicate items in the order in which they occur in
    /// the adapted iterator. Each duplicate item is returned exactly once. If an item appears more
    /// than twice, the second item is the item retained and the rest are discarded.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = vec!["a", "bb", "aa", "c", "ccc"];
    /// itertools::assert_equal(data.into_iter().duplicates_by(|s| s.len()),
    ///                         vec!["aa", "c"]);
    /// ```
    #[cfg(feature = "use_std")]
    fn duplicates_by<V, F>(self, f: F) -> DuplicatesBy<Self, V, F>
        where Self: Sized,
              V: Eq + Hash,
              F: FnMut(&Self::Item) -> V
    {
        duplicates_impl::duplicates_by(self, f)
    }

    /// Return an iterator adaptor that filters out elements that have
    /// already been produced once during the iteration. Duplicates
    /// are detected using hash and equality.
    ///
    /// Clones of visited elements are stored in a hash set in the
    /// iterator.
    ///
    /// The iterator is stable, returning the non-duplicate items in the order
    /// in which they occur in the adapted iterator. In a set of duplicate
    /// items, the first item encountered is the item retained.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = vec![10, 20, 30, 20, 40, 10, 50];
    /// itertools::assert_equal(data.into_iter().unique(),
    ///                         vec![10, 20, 30, 40, 50]);
    /// ```
    #[cfg(feature = "use_std")]
    fn unique(self) -> Unique<Self>
        where Self: Sized,
              Self::Item: Clone + Eq + Hash
    {
        unique_impl::unique(self)
    }

    /// Return an iterator adaptor that filters out elements that have
    /// already been produced once during the iteration.
    ///
    /// Duplicates are detected by comparing the key they map to
    /// with the keying function `f` by hash and equality.
    /// The keys are stored in a hash set in the iterator.
    ///
    /// The iterator is stable, returning the non-duplicate items in the order
    /// in which they occur in the adapted iterator. In a set of duplicate
    /// items, the first item encountered is the item retained.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = vec!["a", "bb", "aa", "c", "ccc"];
    /// itertools::assert_equal(data.into_iter().unique_by(|s| s.len()),
    ///                         vec!["a", "bb", "ccc"]);
    /// ```
    #[cfg(feature = "use_std")]
    fn unique_by<V, F>(self, f: F) -> UniqueBy<Self, V, F>
        where Self: Sized,
              V: Eq + Hash,
              F: FnMut(&Self::Item) -> V
    {
        unique_impl::unique_by(self, f)
    }

    /// Return an iterator adaptor that borrows from this iterator and
    /// takes items while the closure `accept` returns `true`.
    ///
    /// This adaptor can only be used on iterators that implement `PeekingNext`
    /// like `.peekable()`, `put_back` and a few other collection iterators.
    ///
    /// The last and rejected element (first `false`) is still available when
    /// `peeking_take_while` is done.
    ///
    ///
    /// See also [`.take_while_ref()`](Itertools::take_while_ref)
    /// which is a similar adaptor.
    fn peeking_take_while<F>(&mut self, accept: F) -> PeekingTakeWhile<Self, F>
        where Self: Sized + PeekingNext,
              F: FnMut(&Self::Item) -> bool,
    {
        peeking_take_while::peeking_take_while(self, accept)
    }

    /// Return an iterator adaptor that borrows from a `Clone`-able iterator
    /// to only pick off elements while the predicate `accept` returns `true`.
    ///
    /// It uses the `Clone` trait to restore the original iterator so that the
    /// last and rejected element (first `false`) is still available when
    /// `take_while_ref` is done.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let mut hexadecimals = "0123456789abcdef".chars();
    ///
    /// let decimals = hexadecimals.take_while_ref(|c| c.is_numeric())
    ///                            .collect::<String>();
    /// assert_eq!(decimals, "0123456789");
    /// assert_eq!(hexadecimals.next(), Some('a'));
    ///
    /// ```
    fn take_while_ref<F>(&mut self, accept: F) -> TakeWhileRef<Self, F>
        where Self: Clone,
              F: FnMut(&Self::Item) -> bool
    {
        adaptors::take_while_ref(self, accept)
    }

    /// Return an iterator adaptor that filters `Option<A>` iterator elements
    /// and produces `A`. Stops on the first `None` encountered.
    ///
    /// Iterator element type is `A`, the unwrapped element.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// // List all hexadecimal digits
    /// itertools::assert_equal(
    ///     (0..).map(|i| std::char::from_digit(i, 16)).while_some(),
    ///     "0123456789abcdef".chars());
    ///
    /// ```
    fn while_some<A>(self) -> WhileSome<Self>
        where Self: Sized + Iterator<Item = Option<A>>
    {
        adaptors::while_some(self)
    }

    /// Return an iterator adaptor that iterates over the combinations of the
    /// elements from an iterator.
    ///
    /// Iterator element can be any homogeneous tuple of type `Self::Item` with
    /// size up to 12.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let mut v = Vec::new();
    /// for (a, b) in (1..5).tuple_combinations() {
    ///     v.push((a, b));
    /// }
    /// assert_eq!(v, vec![(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]);
    ///
    /// let mut it = (1..5).tuple_combinations();
    /// assert_eq!(Some((1, 2, 3)), it.next());
    /// assert_eq!(Some((1, 2, 4)), it.next());
    /// assert_eq!(Some((1, 3, 4)), it.next());
    /// assert_eq!(Some((2, 3, 4)), it.next());
    /// assert_eq!(None, it.next());
    ///
    /// // this requires a type hint
    /// let it = (1..5).tuple_combinations::<(_, _, _)>();
    /// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]);
    ///
    /// // you can also specify the complete type
    /// use itertools::TupleCombinations;
    /// use std::ops::Range;
    ///
    /// let it: TupleCombinations<Range<u32>, (u32, u32, u32)> = (1..5).tuple_combinations();
    /// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]);
    /// ```
    fn tuple_combinations<T>(self) -> TupleCombinations<Self, T>
        where Self: Sized + Clone,
              Self::Item: Clone,
              T: adaptors::HasCombination<Self>,
    {
        adaptors::tuple_combinations(self)
    }

    /// Return an iterator adaptor that iterates over the `k`-length combinations of
    /// the elements from an iterator.
    ///
    /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new Vec per iteration,
    /// and clones the iterator elements.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let it = (1..5).combinations(3);
    /// itertools::assert_equal(it, vec![
    ///     vec![1, 2, 3],
    ///     vec![1, 2, 4],
    ///     vec![1, 3, 4],
    ///     vec![2, 3, 4],
    /// ]);
    /// ```
    ///
    /// Note: Combinations does not take into account the equality of the iterated values.
    /// ```
    /// use itertools::Itertools;
    ///
    /// let it = vec![1, 2, 2].into_iter().combinations(2);
    /// itertools::assert_equal(it, vec![
    ///     vec![1, 2], // Note: these are the same
    ///     vec![1, 2], // Note: these are the same
    ///     vec![2, 2],
    /// ]);
    /// ```
    #[cfg(feature = "use_alloc")]
    fn combinations(self, k: usize) -> Combinations<Self>
        where Self: Sized,
              Self::Item: Clone
    {
        combinations::combinations(self, k)
    }

    /// Return an iterator that iterates over the `k`-length combinations of
    /// the elements from an iterator, with replacement.
    ///
    /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new Vec per iteration,
    /// and clones the iterator elements.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let it = (1..4).combinations_with_replacement(2);
    /// itertools::assert_equal(it, vec![
    ///     vec![1, 1],
    ///     vec![1, 2],
    ///     vec![1, 3],
    ///     vec![2, 2],
    ///     vec![2, 3],
    ///     vec![3, 3],
    /// ]);
    /// ```
    #[cfg(feature = "use_alloc")]
    fn combinations_with_replacement(self, k: usize) -> CombinationsWithReplacement<Self>
    where
        Self: Sized,
        Self::Item: Clone,
    {
        combinations_with_replacement::combinations_with_replacement(self, k)
    }

    /// Return an iterator adaptor that iterates over all k-permutations of the
    /// elements from an iterator.
    ///
    /// Iterator element type is `Vec<Self::Item>` with length `k`. The iterator
    /// produces a new Vec per iteration, and clones the iterator elements.
    ///
    /// If `k` is greater than the length of the input iterator, the resultant
    /// iterator adaptor will be empty.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let perms = (5..8).permutations(2);
    /// itertools::assert_equal(perms, vec![
    ///     vec![5, 6],
    ///     vec![5, 7],
    ///     vec![6, 5],
    ///     vec![6, 7],
    ///     vec![7, 5],
    ///     vec![7, 6],
    /// ]);
    /// ```
    ///
    /// Note: Permutations does not take into account the equality of the iterated values.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let it = vec![2, 2].into_iter().permutations(2);
    /// itertools::assert_equal(it, vec![
    ///     vec![2, 2], // Note: these are the same
    ///     vec![2, 2], // Note: these are the same
    /// ]);
    /// ```
    ///
    /// Note: The source iterator is collected lazily, and will not be
    /// re-iterated if the permutations adaptor is completed and re-iterated.
    #[cfg(feature = "use_alloc")]
    fn permutations(self, k: usize) -> Permutations<Self>
        where Self: Sized,
              Self::Item: Clone
    {
        permutations::permutations(self, k)
    }

    /// Return an iterator that iterates through the powerset of the elements from an
    /// iterator.
    ///
    /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new `Vec`
    /// per iteration, and clones the iterator elements.
    ///
    /// The powerset of a set contains all subsets including the empty set and the full
    /// input set. A powerset has length _2^n_ where _n_ is the length of the input
    /// set.
    ///
    /// Each `Vec` produced by this iterator represents a subset of the elements
    /// produced by the source iterator.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let sets = (1..4).powerset().collect::<Vec<_>>();
    /// itertools::assert_equal(sets, vec![
    ///     vec![],
    ///     vec![1],
    ///     vec![2],
    ///     vec![3],
    ///     vec![1, 2],
    ///     vec![1, 3],
    ///     vec![2, 3],
    ///     vec![1, 2, 3],
    /// ]);
    /// ```
    #[cfg(feature = "use_alloc")]
    fn powerset(self) -> Powerset<Self>
        where Self: Sized,
              Self::Item: Clone,
    {
        powerset::powerset(self)
    }

    /// Return an iterator adaptor that pads the sequence to a minimum length of
    /// `min` by filling missing elements using a closure `f`.
    ///
    /// Iterator element type is `Self::Item`.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let it = (0..5).pad_using(10, |i| 2*i);
    /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 10, 12, 14, 16, 18]);
    ///
    /// let it = (0..10).pad_using(5, |i| 2*i);
    /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
    ///
    /// let it = (0..5).pad_using(10, |i| 2*i).rev();
    /// itertools::assert_equal(it, vec![18, 16, 14, 12, 10, 4, 3, 2, 1, 0]);
    /// ```
    fn pad_using<F>(self, min: usize, f: F) -> PadUsing<Self, F>
        where Self: Sized,
              F: FnMut(usize) -> Self::Item
    {
        pad_tail::pad_using(self, min, f)
    }

    /// Return an iterator adaptor that wraps each element in a `Position` to
    /// ease special-case handling of the first or last elements.
    ///
    /// Iterator element type is
    /// [`Position<Self::Item>`](Position)
    ///
    /// ```
    /// use itertools::{Itertools, Position};
    ///
    /// let it = (0..4).with_position();
    /// itertools::assert_equal(it,
    ///                         vec![Position::First(0),
    ///                              Position::Middle(1),
    ///                              Position::Middle(2),
    ///                              Position::Last(3)]);
    ///
    /// let it = (0..1).with_position();
    /// itertools::assert_equal(it, vec![Position::Only(0)]);
    /// ```
    fn with_position(self) -> WithPosition<Self>
        where Self: Sized,
    {
        with_position::with_position(self)
    }

    /// Return an iterator adaptor that yields the indices of all elements
    /// satisfying a predicate, counted from the start of the iterator.
    ///
    /// Equivalent to `iter.enumerate().filter(|(_, v)| predicate(v)).map(|(i, _)| i)`.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = vec![1, 2, 3, 3, 4, 6, 7, 9];
    /// itertools::assert_equal(data.iter().positions(|v| v % 2 == 0), vec![1, 4, 5]);
    ///
    /// itertools::assert_equal(data.iter().positions(|v| v % 2 == 1).rev(), vec![7, 6, 3, 2, 0]);
    /// ```
    fn positions<P>(self, predicate: P) -> Positions<Self, P>
        where Self: Sized,
              P: FnMut(Self::Item) -> bool,
    {
        adaptors::positions(self, predicate)
    }

    /// Return an iterator adaptor that applies a mutating function
    /// to each element before yielding it.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let input = vec![vec![1], vec![3, 2, 1]];
    /// let it = input.into_iter().update(|mut v| v.push(0));
    /// itertools::assert_equal(it, vec![vec![1, 0], vec![3, 2, 1, 0]]);
    /// ```
    fn update<F>(self, updater: F) -> Update<Self, F>
        where Self: Sized,
              F: FnMut(&mut Self::Item),
    {
        adaptors::update(self, updater)
    }

    // non-adaptor methods
    /// Advances the iterator and returns the next items grouped in a tuple of
    /// a specific size (up to 12).
    ///
    /// If there are enough elements to be grouped in a tuple, then the tuple is
    /// returned inside `Some`, otherwise `None` is returned.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let mut iter = 1..5;
    ///
    /// assert_eq!(Some((1, 2)), iter.next_tuple());
    /// ```
    fn next_tuple<T>(&mut self) -> Option<T>
        where Self: Sized + Iterator<Item = T::Item>,
              T: traits::HomogeneousTuple
    {
        T::collect_from_iter_no_buf(self)
    }

    /// Collects all items from the iterator into a tuple of a specific size
    /// (up to 12).
    ///
    /// If the number of elements inside the iterator is **exactly** equal to
    /// the tuple size, then the tuple is returned inside `Some`, otherwise
    /// `None` is returned.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let iter = 1..3;
    ///
    /// if let Some((x, y)) = iter.collect_tuple() {
    ///     assert_eq!((x, y), (1, 2))
    /// } else {
    ///     panic!("Expected two elements")
    /// }
    /// ```
    fn collect_tuple<T>(mut self) -> Option<T>
        where Self: Sized + Iterator<Item = T::Item>,
              T: traits::HomogeneousTuple
    {
        match self.next_tuple() {
            elt @ Some(_) => match self.next() {
                Some(_) => None,
                None => elt,
            },
            _ => None
        }
    }


    /// Find the position and value of the first element satisfying a predicate.
    ///
    /// The iterator is not advanced past the first element found.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let text = "Hα";
    /// assert_eq!(text.chars().find_position(|ch| ch.is_lowercase()), Some((1, 'α')));
    /// ```
    fn find_position<P>(&mut self, mut pred: P) -> Option<(usize, Self::Item)>
        where P: FnMut(&Self::Item) -> bool
    {
        let mut index = 0usize;
        for elt in self {
            if pred(&elt) {
                return Some((index, elt));
            }
            index += 1;
        }
        None
    }
    /// Find the value of the first element satisfying a predicate or return the last element, if any.
    ///
    /// The iterator is not advanced past the first element found.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let numbers = [1, 2, 3, 4];
    /// assert_eq!(numbers.iter().find_or_last(|&&x| x > 5), Some(&4));
    /// assert_eq!(numbers.iter().find_or_last(|&&x| x > 2), Some(&3));
    /// assert_eq!(std::iter::empty::<i32>().find_or_last(|&x| x > 5), None);
    /// ```
    fn find_or_last<P>(mut self, mut predicate: P) -> Option<Self::Item>
        where Self: Sized,
              P: FnMut(&Self::Item) -> bool,
    {
        let mut prev = None;
        self.find_map(|x| if predicate(&x) { Some(x) } else { prev = Some(x); None })
            .or(prev)
    }
    /// Find the value of the first element satisfying a predicate or return the first element, if any.
    ///
    /// The iterator is not advanced past the first element found.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let numbers = [1, 2, 3, 4];
    /// assert_eq!(numbers.iter().find_or_first(|&&x| x > 5), Some(&1));
    /// assert_eq!(numbers.iter().find_or_first(|&&x| x > 2), Some(&3));
    /// assert_eq!(std::iter::empty::<i32>().find_or_first(|&x| x > 5), None);
    /// ```
    fn find_or_first<P>(mut self, mut predicate: P) -> Option<Self::Item>
        where Self: Sized,
              P: FnMut(&Self::Item) -> bool,
    {
        let first = self.next()?;
        Some(if predicate(&first) {
            first
        } else {
            self.find(|x| predicate(&x)).unwrap_or(first)
        })
    }
    /// Returns `true` if the given item is present in this iterator.
    ///
    /// This method is short-circuiting. If the given item is present in this
    /// iterator, this method will consume the iterator up-to-and-including
    /// the item. If the given item is not present in this iterator, the
    /// iterator will be exhausted.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// #[derive(PartialEq, Debug)]
    /// enum Enum { A, B, C, D, E, }
    /// 
    /// let mut iter = vec![Enum::A, Enum::B, Enum::C, Enum::D].into_iter();
    /// 
    /// // search `iter` for `B`
    /// assert_eq!(iter.contains(&Enum::B), true);
    /// // `B` was found, so the iterator now rests at the item after `B` (i.e, `C`).
    /// assert_eq!(iter.next(), Some(Enum::C));
    /// 
    /// // search `iter` for `E`
    /// assert_eq!(iter.contains(&Enum::E), false);
    /// // `E` wasn't found, so `iter` is now exhausted
    /// assert_eq!(iter.next(), None);
    /// ```
    fn contains<Q>(&mut self, query: &Q) -> bool
    where
        Self: Sized,
        Self::Item: Borrow<Q>,
        Q: PartialEq,
    {
        self.any(|x| x.borrow() == query)
    }

    /// Check whether all elements compare equal.
    ///
    /// Empty iterators are considered to have equal elements:
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = vec![1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5];
    /// assert!(!data.iter().all_equal());
    /// assert!(data[0..3].iter().all_equal());
    /// assert!(data[3..5].iter().all_equal());
    /// assert!(data[5..8].iter().all_equal());
    ///
    /// let data : Option<usize> = None;
    /// assert!(data.into_iter().all_equal());
    /// ```
    fn all_equal(&mut self) -> bool
        where Self: Sized,
              Self::Item: PartialEq,
    {
        match self.next() {
            None => true,
            Some(a) => self.all(|x| a == x),
        }
    }

    /// Check whether all elements are unique (non equal).
    ///
    /// Empty iterators are considered to have unique elements:
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = vec![1, 2, 3, 4, 1, 5];
    /// assert!(!data.iter().all_unique());
    /// assert!(data[0..4].iter().all_unique());
    /// assert!(data[1..6].iter().all_unique());
    ///
    /// let data : Option<usize> = None;
    /// assert!(data.into_iter().all_unique());
    /// ```
    #[cfg(feature = "use_std")]
    fn all_unique(&mut self) -> bool
        where Self: Sized,
              Self::Item: Eq + Hash
    {
        let mut used = HashSet::new();
        self.all(move |elt| used.insert(elt))
    }

    /// Consume the first `n` elements from the iterator eagerly,
    /// and return the same iterator again.
    ///
    /// It works similarly to *.skip(* `n` *)* except it is eager and
    /// preserves the iterator type.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let mut iter = "αβγ".chars().dropping(2);
    /// itertools::assert_equal(iter, "γ".chars());
    /// ```
    ///
    /// *Fusing notes: if the iterator is exhausted by dropping,
    /// the result of calling `.next()` again depends on the iterator implementation.*
    fn dropping(mut self, n: usize) -> Self
        where Self: Sized
    {
        if n > 0 {
            self.nth(n - 1);
        }
        self
    }

    /// Consume the last `n` elements from the iterator eagerly,
    /// and return the same iterator again.
    ///
    /// This is only possible on double ended iterators. `n` may be
    /// larger than the number of elements.
    ///
    /// Note: This method is eager, dropping the back elements immediately and
    /// preserves the iterator type.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let init = vec![0, 3, 6, 9].into_iter().dropping_back(1);
    /// itertools::assert_equal(init, vec![0, 3, 6]);
    /// ```
    fn dropping_back(mut self, n: usize) -> Self
        where Self: Sized,
              Self: DoubleEndedIterator
    {
        if n > 0 {
            (&mut self).rev().nth(n - 1);
        }
        self
    }

    /// Run the closure `f` eagerly on each element of the iterator.
    ///
    /// Consumes the iterator until its end.
    ///
    /// ```
    /// use std::sync::mpsc::channel;
    /// use itertools::Itertools;
    ///
    /// let (tx, rx) = channel();
    ///
    /// // use .foreach() to apply a function to each value -- sending it
    /// (0..5).map(|x| x * 2 + 1).foreach(|x| { tx.send(x).unwrap(); } );
    ///
    /// drop(tx);
    ///
    /// itertools::assert_equal(rx.iter(), vec![1, 3, 5, 7, 9]);
    /// ```
    #[deprecated(note="Use .for_each() instead", since="0.8.0")]
    fn foreach<F>(self, f: F)
        where F: FnMut(Self::Item),
              Self: Sized,
    {
        self.for_each(f)
    }

    /// Combine all an iterator's elements into one element by using [`Extend`].
    ///
    /// This combinator will extend the first item with each of the rest of the
    /// items of the iterator. If the iterator is empty, the default value of
    /// `I::Item` is returned.
    ///
    /// ```rust
    /// use itertools::Itertools;
    ///
    /// let input = vec![vec![1], vec![2, 3], vec![4, 5, 6]];
    /// assert_eq!(input.into_iter().concat(),
    ///            vec![1, 2, 3, 4, 5, 6]);
    /// ```
    fn concat(self) -> Self::Item
        where Self: Sized,
              Self::Item: Extend<<<Self as Iterator>::Item as IntoIterator>::Item> + IntoIterator + Default
    {
        concat(self)
    }

    /// `.collect_vec()` is simply a type specialization of [`Iterator::collect`],
    /// for convenience.
    #[cfg(feature = "use_alloc")]
    fn collect_vec(self) -> Vec<Self::Item>
        where Self: Sized
    {
        self.collect()
    }

    /// `.try_collect()` is more convenient way of writing
    /// `.collect::<Result<_, _>>()`
    ///
    /// # Example
    ///
    /// ```
    /// use std::{fs, io};
    /// use itertools::Itertools;
    ///
    /// fn process_dir_entries(entries: &[fs::DirEntry]) {
    ///     // ...
    /// }
    ///
    /// fn do_stuff() -> std::io::Result<()> {
    ///     let entries: Vec<_> = fs::read_dir(".")?.try_collect()?;
    ///     process_dir_entries(&entries);
    ///
    ///     Ok(())
    /// }
    /// ```
    #[cfg(feature = "use_alloc")]
    fn try_collect<T, U, E>(self) -> Result<U, E>
    where
        Self: Sized + Iterator<Item = Result<T, E>>,
        Result<U, E>: FromIterator<Result<T, E>>,
    {
        self.collect()
    }

    /// Assign to each reference in `self` from the `from` iterator,
    /// stopping at the shortest of the two iterators.
    ///
    /// The `from` iterator is queried for its next element before the `self`
    /// iterator, and if either is exhausted the method is done.
    ///
    /// Return the number of elements written.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let mut xs = [0; 4];
    /// xs.iter_mut().set_from(1..);
    /// assert_eq!(xs, [1, 2, 3, 4]);
    /// ```
    #[inline]
    fn set_from<'a, A: 'a, J>(&mut self, from: J) -> usize
        where Self: Iterator<Item = &'a mut A>,
              J: IntoIterator<Item = A>
    {
        let mut count = 0;
        for elt in from {
            match self.next() {
                None => break,
                Some(ptr) => *ptr = elt,
            }
            count += 1;
        }
        count
    }

    /// Combine all iterator elements into one String, separated by `sep`.
    ///
    /// Use the `Display` implementation of each element.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// assert_eq!(["a", "b", "c"].iter().join(", "), "a, b, c");
    /// assert_eq!([1, 2, 3].iter().join(", "), "1, 2, 3");
    /// ```
    #[cfg(feature = "use_alloc")]
    fn join(&mut self, sep: &str) -> String
        where Self::Item: std::fmt::Display
    {
        match self.next() {
            None => String::new(),
            Some(first_elt) => {
                // estimate lower bound of capacity needed
                let (lower, _) = self.size_hint();
                let mut result = String::with_capacity(sep.len() * lower);
                write!(&mut result, "{}", first_elt).unwrap();
                self.for_each(|elt| {
                    result.push_str(sep);
                    write!(&mut result, "{}", elt).unwrap();
                });
                result
            }
        }
    }

    /// Format all iterator elements, separated by `sep`.
    ///
    /// All elements are formatted (any formatting trait)
    /// with `sep` inserted between each element.
    ///
    /// **Panics** if the formatter helper is formatted more than once.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = [1.1, 2.71828, -3.];
    /// assert_eq!(
    ///     format!("{:.2}", data.iter().format(", ")),
    ///            "1.10, 2.72, -3.00");
    /// ```
    fn format(self, sep: &str) -> Format<Self>
        where Self: Sized,
    {
        format::new_format_default(self, sep)
    }

    /// Format all iterator elements, separated by `sep`.
    ///
    /// This is a customizable version of [`.format()`](Itertools::format).
    ///
    /// The supplied closure `format` is called once per iterator element,
    /// with two arguments: the element and a callback that takes a
    /// `&Display` value, i.e. any reference to type that implements `Display`.
    ///
    /// Using `&format_args!(...)` is the most versatile way to apply custom
    /// element formatting. The callback can be called multiple times if needed.
    ///
    /// **Panics** if the formatter helper is formatted more than once.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = [1.1, 2.71828, -3.];
    /// let data_formatter = data.iter().format_with(", ", |elt, f| f(&format_args!("{:.2}", elt)));
    /// assert_eq!(format!("{}", data_formatter),
    ///            "1.10, 2.72, -3.00");
    ///
    /// // .format_with() is recursively composable
    /// let matrix = [[1., 2., 3.],
    ///               [4., 5., 6.]];
    /// let matrix_formatter = matrix.iter().format_with("\n", |row, f| {
    ///                                 f(&row.iter().format_with(", ", |elt, g| g(&elt)))
    ///                              });
    /// assert_eq!(format!("{}", matrix_formatter),
    ///            "1, 2, 3\n4, 5, 6");
    ///
    ///
    /// ```
    fn format_with<F>(self, sep: &str, format: F) -> FormatWith<Self, F>
        where Self: Sized,
              F: FnMut(Self::Item, &mut dyn FnMut(&dyn fmt::Display) -> fmt::Result) -> fmt::Result,
    {
        format::new_format(self, sep, format)
    }

    /// See [`.fold_ok()`](Itertools::fold_ok).
    #[deprecated(note="Use .fold_ok() instead", since="0.10.0")]
    fn fold_results<A, E, B, F>(&mut self, start: B, f: F) -> Result<B, E>
        where Self: Iterator<Item = Result<A, E>>,
              F: FnMut(B, A) -> B
    {
        self.fold_ok(start, f)
    }

    /// Fold `Result` values from an iterator.
    ///
    /// Only `Ok` values are folded. If no error is encountered, the folded
    /// value is returned inside `Ok`. Otherwise, the operation terminates
    /// and returns the first `Err` value it encounters. No iterator elements are
    /// consumed after the first error.
    ///
    /// The first accumulator value is the `start` parameter.
    /// Each iteration passes the accumulator value and the next value inside `Ok`
    /// to the fold function `f` and its return value becomes the new accumulator value.
    ///
    /// For example the sequence *Ok(1), Ok(2), Ok(3)* will result in a
    /// computation like this:
    ///
    /// ```ignore
    /// let mut accum = start;
    /// accum = f(accum, 1);
    /// accum = f(accum, 2);
    /// accum = f(accum, 3);
    /// ```
    ///
    /// With a `start` value of 0 and an addition as folding function,
    /// this effectively results in *((0 + 1) + 2) + 3*
    ///
    /// ```
    /// use std::ops::Add;
    /// use itertools::Itertools;
    ///
    /// let values = [1, 2, -2, -1, 2, 1];
    /// assert_eq!(
    ///     values.iter()
    ///           .map(Ok::<_, ()>)
    ///           .fold_ok(0, Add::add),
    ///     Ok(3)
    /// );
    /// assert!(
    ///     values.iter()
    ///           .map(|&x| if x >= 0 { Ok(x) } else { Err("Negative number") })
    ///           .fold_ok(0, Add::add)
    ///           .is_err()
    /// );
    /// ```
    fn fold_ok<A, E, B, F>(&mut self, mut start: B, mut f: F) -> Result<B, E>
        where Self: Iterator<Item = Result<A, E>>,
              F: FnMut(B, A) -> B
    {
        for elt in self {
            match elt {
                Ok(v) => start = f(start, v),
                Err(u) => return Err(u),
            }
        }
        Ok(start)
    }

    /// Fold `Option` values from an iterator.
    ///
    /// Only `Some` values are folded. If no `None` is encountered, the folded
    /// value is returned inside `Some`. Otherwise, the operation terminates
    /// and returns `None`. No iterator elements are consumed after the `None`.
    ///
    /// This is the `Option` equivalent to [`fold_ok`](Itertools::fold_ok).
    ///
    /// ```
    /// use std::ops::Add;
    /// use itertools::Itertools;
    ///
    /// let mut values = vec![Some(1), Some(2), Some(-2)].into_iter();
    /// assert_eq!(values.fold_options(5, Add::add), Some(5 + 1 + 2 - 2));
    ///
    /// let mut more_values = vec![Some(2), None, Some(0)].into_iter();
    /// assert!(more_values.fold_options(0, Add::add).is_none());
    /// assert_eq!(more_values.next().unwrap(), Some(0));
    /// ```
    fn fold_options<A, B, F>(&mut self, mut start: B, mut f: F) -> Option<B>
        where Self: Iterator<Item = Option<A>>,
              F: FnMut(B, A) -> B
    {
        for elt in self {
            match elt {
                Some(v) => start = f(start, v),
                None => return None,
            }
        }
        Some(start)
    }

    /// Accumulator of the elements in the iterator.
    ///
    /// Like `.fold()`, without a base case. If the iterator is
    /// empty, return `None`. With just one element, return it.
    /// Otherwise elements are accumulated in sequence using the closure `f`.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// assert_eq!((0..10).fold1(|x, y| x + y).unwrap_or(0), 45);
    /// assert_eq!((0..0).fold1(|x, y| x * y), None);
    /// ```
    #[deprecated(since = "0.10.2", note = "Use `Iterator::reduce` instead")]
    fn fold1<F>(mut self, f: F) -> Option<Self::Item>
        where F: FnMut(Self::Item, Self::Item) -> Self::Item,
              Self: Sized,
    {
        self.next().map(move |x| self.fold(x, f))
    }

    /// Accumulate the elements in the iterator in a tree-like manner.
    ///
    /// You can think of it as, while there's more than one item, repeatedly
    /// combining adjacent items.  It does so in bottom-up-merge-sort order,
    /// however, so that it needs only logarithmic stack space.
    ///
    /// This produces a call tree like the following (where the calls under
    /// an item are done after reading that item):
    ///
    /// ```text
    /// 1 2 3 4 5 6 7
    /// │ │ │ │ │ │ │
    /// └─f └─f └─f │
    ///   │   │   │ │
    ///   └───f   └─f
    ///       │     │
    ///       └─────f
    /// ```
    ///
    /// Which, for non-associative functions, will typically produce a different
    /// result than the linear call tree used by `fold1`:
    ///
    /// ```text
    /// 1 2 3 4 5 6 7
    /// │ │ │ │ │ │ │
    /// └─f─f─f─f─f─f
    /// ```
    ///
    /// If `f` is associative, prefer the normal `fold1` instead.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// // The same tree as above
    /// let num_strings = (1..8).map(|x| x.to_string());
    /// assert_eq!(num_strings.tree_fold1(|x, y| format!("f({}, {})", x, y)),
    ///     Some(String::from("f(f(f(1, 2), f(3, 4)), f(f(5, 6), 7))")));
    ///
    /// // Like fold1, an empty iterator produces None
    /// assert_eq!((0..0).tree_fold1(|x, y| x * y), None);
    ///
    /// // tree_fold1 matches fold1 for associative operations...
    /// assert_eq!((0..10).tree_fold1(|x, y| x + y),
    ///     (0..10).fold1(|x, y| x + y));
    /// // ...but not for non-associative ones
    /// assert_ne!((0..10).tree_fold1(|x, y| x - y),
    ///     (0..10).fold1(|x, y| x - y));
    /// ```
    fn tree_fold1<F>(mut self, mut f: F) -> Option<Self::Item>
        where F: FnMut(Self::Item, Self::Item) -> Self::Item,
              Self: Sized,
    {
        type State<T> = Result<T, Option<T>>;

        fn inner0<T, II, FF>(it: &mut II, f: &mut FF) -> State<T>
            where
                II: Iterator<Item = T>,
                FF: FnMut(T, T) -> T
        {
            // This function could be replaced with `it.next().ok_or(None)`,
            // but half the useful tree_fold1 work is combining adjacent items,
            // so put that in a form that LLVM is more likely to optimize well.

            let a =
                if let Some(v) = it.next() { v }
                else { return Err(None) };
            let b =
                if let Some(v) = it.next() { v }
                else { return Err(Some(a)) };
            Ok(f(a, b))
        }

        fn inner<T, II, FF>(stop: usize, it: &mut II, f: &mut FF) -> State<T>
            where
                II: Iterator<Item = T>,
                FF: FnMut(T, T) -> T
        {
            let mut x = inner0(it, f)?;
            for height in 0..stop {
                // Try to get another tree the same size with which to combine it,
                // creating a new tree that's twice as big for next time around.
                let next =
                    if height == 0 {
                        inner0(it, f)
                    } else {
                        inner(height, it, f)
                    };
                match next {
                    Ok(y) => x = f(x, y),

                    // If we ran out of items, combine whatever we did manage
                    // to get.  It's better combined with the current value
                    // than something in a parent frame, because the tree in
                    // the parent is always as least as big as this one.
                    Err(None) => return Err(Some(x)),
                    Err(Some(y)) => return Err(Some(f(x, y))),
                }
            }
            Ok(x)
        }

        match inner(usize::max_value(), &mut self, &mut f) {
            Err(x) => x,
            _ => unreachable!(),
        }
    }

    /// An iterator method that applies a function, producing a single, final value.
    ///
    /// `fold_while()` is basically equivalent to [`Iterator::fold`] but with additional support for
    /// early exit via short-circuiting.
    ///
    /// ```
    /// use itertools::Itertools;
    /// use itertools::FoldWhile::{Continue, Done};
    ///
    /// let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
    ///
    /// let mut result = 0;
    ///
    /// // for loop:
    /// for i in &numbers {
    ///     if *i > 5 {
    ///         break;
    ///     }
    ///     result = result + i;
    /// }
    ///
    /// // fold:
    /// let result2 = numbers.iter().fold(0, |acc, x| {
    ///     if *x > 5 { acc } else { acc + x }
    /// });
    ///
    /// // fold_while:
    /// let result3 = numbers.iter().fold_while(0, |acc, x| {
    ///     if *x > 5 { Done(acc) } else { Continue(acc + x) }
    /// }).into_inner();
    ///
    /// // they're the same
    /// assert_eq!(result, result2);
    /// assert_eq!(result2, result3);
    /// ```
    ///
    /// The big difference between the computations of `result2` and `result3` is that while
    /// `fold()` called the provided closure for every item of the callee iterator,
    /// `fold_while()` actually stopped iterating as soon as it encountered `Fold::Done(_)`.
    fn fold_while<B, F>(&mut self, init: B, mut f: F) -> FoldWhile<B>
        where Self: Sized,
              F: FnMut(B, Self::Item) -> FoldWhile<B>
    {
        use Result::{
            Ok as Continue,
            Err as Break,
        };

        let result = self.try_fold(init, #[inline(always)] |acc, v|
            match f(acc, v) {
              FoldWhile::Continue(acc) => Continue(acc),
              FoldWhile::Done(acc) => Break(acc),
            }
        );

        match result {
            Continue(acc) => FoldWhile::Continue(acc),
            Break(acc) => FoldWhile::Done(acc),
        }
    }

    /// Iterate over the entire iterator and add all the elements.
    ///
    /// An empty iterator returns `None`, otherwise `Some(sum)`.
    ///
    /// # Panics
    ///
    /// When calling `sum1()` and a primitive integer type is being returned, this
    /// method will panic if the computation overflows and debug assertions are
    /// enabled.
    ///
    /// # Examples
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let empty_sum = (1..1).sum1::<i32>();
    /// assert_eq!(empty_sum, None);
    ///
    /// let nonempty_sum = (1..11).sum1::<i32>();
    /// assert_eq!(nonempty_sum, Some(55));
    /// ```
    fn sum1<S>(mut self) -> Option<S>
        where Self: Sized,
              S: std::iter::Sum<Self::Item>,
    {
        self.next()
            .map(|first| once(first).chain(self).sum())
    }

    /// Iterate over the entire iterator and multiply all the elements.
    ///
    /// An empty iterator returns `None`, otherwise `Some(product)`.
    ///
    /// # Panics
    ///
    /// When calling `product1()` and a primitive integer type is being returned,
    /// method will panic if the computation overflows and debug assertions are
    /// enabled.
    ///
    /// # Examples
    /// ```
    /// use itertools::Itertools;
    ///
    /// let empty_product = (1..1).product1::<i32>();
    /// assert_eq!(empty_product, None);
    ///
    /// let nonempty_product = (1..11).product1::<i32>();
    /// assert_eq!(nonempty_product, Some(3628800));
    /// ```
    fn product1<P>(mut self) -> Option<P>
        where Self: Sized,
              P: std::iter::Product<Self::Item>,
    {
        self.next()
            .map(|first| once(first).chain(self).product())
    }

    /// Sort all iterator elements into a new iterator in ascending order.
    ///
    /// **Note:** This consumes the entire iterator, uses the
    /// [`slice::sort_unstable`] method and returns the result as a new
    /// iterator that owns its elements.
    ///
    /// The sorted iterator, if directly collected to a `Vec`, is converted
    /// without any extra copying or allocation cost.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// // sort the letters of the text in ascending order
    /// let text = "bdacfe";
    /// itertools::assert_equal(text.chars().sorted_unstable(),
    ///                         "abcdef".chars());
    /// ```
    #[cfg(feature = "use_alloc")]
    fn sorted_unstable(self) -> VecIntoIter<Self::Item>
        where Self: Sized,
              Self::Item: Ord
    {
        // Use .sort_unstable() directly since it is not quite identical with
        // .sort_by(Ord::cmp)
        let mut v = Vec::from_iter(self);
        v.sort_unstable();
        v.into_iter()
    }

    /// Sort all iterator elements into a new iterator in ascending order.
    ///
    /// **Note:** This consumes the entire iterator, uses the
    /// [`slice::sort_unstable_by`] method and returns the result as a new
    /// iterator that owns its elements.
    ///
    /// The sorted iterator, if directly collected to a `Vec`, is converted
    /// without any extra copying or allocation cost.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// // sort people in descending order by age
    /// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)];
    ///
    /// let oldest_people_first = people
    ///     .into_iter()
    ///     .sorted_unstable_by(|a, b| Ord::cmp(&b.1, &a.1))
    ///     .map(|(person, _age)| person);
    ///
    /// itertools::assert_equal(oldest_people_first,
    ///                         vec!["Jill", "Jack", "Jane", "John"]);
    /// ```
    #[cfg(feature = "use_alloc")]
    fn sorted_unstable_by<F>(self, cmp: F) -> VecIntoIter<Self::Item>
        where Self: Sized,
              F: FnMut(&Self::Item, &Self::Item) -> Ordering,
    {
        let mut v = Vec::from_iter(self);
        v.sort_unstable_by(cmp);
        v.into_iter()
    }

    /// Sort all iterator elements into a new iterator in ascending order.
    ///
    /// **Note:** This consumes the entire iterator, uses the
    /// [`slice::sort_unstable_by_key`] method and returns the result as a new
    /// iterator that owns its elements.
    ///
    /// The sorted iterator, if directly collected to a `Vec`, is converted
    /// without any extra copying or allocation cost.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// // sort people in descending order by age
    /// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)];
    ///
    /// let oldest_people_first = people
    ///     .into_iter()
    ///     .sorted_unstable_by_key(|x| -x.1)
    ///     .map(|(person, _age)| person);
    ///
    /// itertools::assert_equal(oldest_people_first,
    ///                         vec!["Jill", "Jack", "Jane", "John"]);
    /// ```
    #[cfg(feature = "use_alloc")]
    fn sorted_unstable_by_key<K, F>(self, f: F) -> VecIntoIter<Self::Item>
        where Self: Sized,
              K: Ord,
              F: FnMut(&Self::Item) -> K,
    {
        let mut v = Vec::from_iter(self);
        v.sort_unstable_by_key(f);
        v.into_iter()
    }

    /// Sort all iterator elements into a new iterator in ascending order.
    ///
    /// **Note:** This consumes the entire iterator, uses the
    /// [`slice::sort`] method and returns the result as a new
    /// iterator that owns its elements.
    ///
    /// The sorted iterator, if directly collected to a `Vec`, is converted
    /// without any extra copying or allocation cost.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// // sort the letters of the text in ascending order
    /// let text = "bdacfe";
    /// itertools::assert_equal(text.chars().sorted(),
    ///                         "abcdef".chars());
    /// ```
    #[cfg(feature = "use_alloc")]
    fn sorted(self) -> VecIntoIter<Self::Item>
        where Self: Sized,
              Self::Item: Ord
    {
        // Use .sort() directly since it is not quite identical with
        // .sort_by(Ord::cmp)
        let mut v = Vec::from_iter(self);
        v.sort();
        v.into_iter()
    }

    /// Sort all iterator elements into a new iterator in ascending order.
    ///
    /// **Note:** This consumes the entire iterator, uses the
    /// [`slice::sort_by`] method and returns the result as a new
    /// iterator that owns its elements.
    ///
    /// The sorted iterator, if directly collected to a `Vec`, is converted
    /// without any extra copying or allocation cost.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// // sort people in descending order by age
    /// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)];
    ///
    /// let oldest_people_first = people
    ///     .into_iter()
    ///     .sorted_by(|a, b| Ord::cmp(&b.1, &a.1))
    ///     .map(|(person, _age)| person);
    ///
    /// itertools::assert_equal(oldest_people_first,
    ///                         vec!["Jill", "Jack", "Jane", "John"]);
    /// ```
    #[cfg(feature = "use_alloc")]
    fn sorted_by<F>(self, cmp: F) -> VecIntoIter<Self::Item>
        where Self: Sized,
              F: FnMut(&Self::Item, &Self::Item) -> Ordering,
    {
        let mut v = Vec::from_iter(self);
        v.sort_by(cmp);
        v.into_iter()
    }

    /// Sort all iterator elements into a new iterator in ascending order.
    ///
    /// **Note:** This consumes the entire iterator, uses the
    /// [`slice::sort_by_key`] method and returns the result as a new
    /// iterator that owns its elements.
    ///
    /// The sorted iterator, if directly collected to a `Vec`, is converted
    /// without any extra copying or allocation cost.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// // sort people in descending order by age
    /// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)];
    ///
    /// let oldest_people_first = people
    ///     .into_iter()
    ///     .sorted_by_key(|x| -x.1)
    ///     .map(|(person, _age)| person);
    ///
    /// itertools::assert_equal(oldest_people_first,
    ///                         vec!["Jill", "Jack", "Jane", "John"]);
    /// ```
    #[cfg(feature = "use_alloc")]
    fn sorted_by_key<K, F>(self, f: F) -> VecIntoIter<Self::Item>
        where Self: Sized,
              K: Ord,
              F: FnMut(&Self::Item) -> K,
    {
        let mut v = Vec::from_iter(self);
        v.sort_by_key(f);
        v.into_iter()
    }

    /// Sort all iterator elements into a new iterator in ascending order. The key function is
    /// called exactly once per key.
    ///
    /// **Note:** This consumes the entire iterator, uses the
    /// [`slice::sort_by_cached_key`] method and returns the result as a new
    /// iterator that owns its elements.
    ///
    /// The sorted iterator, if directly collected to a `Vec`, is converted
    /// without any extra copying or allocation cost.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// // sort people in descending order by age
    /// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)];
    ///
    /// let oldest_people_first = people
    ///     .into_iter()
    ///     .sorted_by_cached_key(|x| -x.1)
    ///     .map(|(person, _age)| person);
    ///
    /// itertools::assert_equal(oldest_people_first,
    ///                         vec!["Jill", "Jack", "Jane", "John"]);
    /// ```
    /// ```
    #[cfg(feature = "use_alloc")]
    fn sorted_by_cached_key<K, F>(self, f: F) -> VecIntoIter<Self::Item>
    where
        Self: Sized,
        K: Ord,
        F: FnMut(&Self::Item) -> K,
    {
        let mut v = Vec::from_iter(self);
        v.sort_by_cached_key(f);
        v.into_iter()
    }

    /// Sort the k smallest elements into a new iterator, in ascending order.
    ///
    /// **Note:** This consumes the entire iterator, and returns the result
    /// as a new iterator that owns its elements.  If the input contains
    /// less than k elements, the result is equivalent to `self.sorted()`.
    ///
    /// This is guaranteed to use `k * sizeof(Self::Item) + O(1)` memory
    /// and `O(n log k)` time, with `n` the number of elements in the input.
    ///
    /// The sorted iterator, if directly collected to a `Vec`, is converted
    /// without any extra copying or allocation cost.
    ///
    /// **Note:** This is functionally-equivalent to `self.sorted().take(k)`
    /// but much more efficient.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// // A random permutation of 0..15
    /// let numbers = vec![6, 9, 1, 14, 0, 4, 8, 7, 11, 2, 10, 3, 13, 12, 5];
    ///
    /// let five_smallest = numbers
    ///     .into_iter()
    ///     .k_smallest(5);
    ///
    /// itertools::assert_equal(five_smallest, 0..5);
    /// ```
    #[cfg(feature = "use_alloc")]
    fn k_smallest(self, k: usize) -> VecIntoIter<Self::Item>
        where Self: Sized,
              Self::Item: Ord
    {
        crate::k_smallest::k_smallest(self, k)
            .into_sorted_vec()
            .into_iter()
    }

    /// Collect all iterator elements into one of two
    /// partitions. Unlike [`Iterator::partition`], each partition may
    /// have a distinct type.
    ///
    /// ```
    /// use itertools::{Itertools, Either};
    ///
    /// let successes_and_failures = vec![Ok(1), Err(false), Err(true), Ok(2)];
    ///
    /// let (successes, failures): (Vec<_>, Vec<_>) = successes_and_failures
    ///     .into_iter()
    ///     .partition_map(|r| {
    ///         match r {
    ///             Ok(v) => Either::Left(v),
    ///             Err(v) => Either::Right(v),
    ///         }
    ///     });
    ///
    /// assert_eq!(successes, [1, 2]);
    /// assert_eq!(failures, [false, true]);
    /// ```
    fn partition_map<A, B, F, L, R>(self, mut predicate: F) -> (A, B)
        where Self: Sized,
              F: FnMut(Self::Item) -> Either<L, R>,
              A: Default + Extend<L>,
              B: Default + Extend<R>,
    {
        let mut left = A::default();
        let mut right = B::default();

        self.for_each(|val| match predicate(val) {
            Either::Left(v) => left.extend(Some(v)),
            Either::Right(v) => right.extend(Some(v)),
        });

        (left, right)
    }

    /// Partition a sequence of `Result`s into one list of all the `Ok` elements
    /// and another list of all the `Err` elements.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let successes_and_failures = vec![Ok(1), Err(false), Err(true), Ok(2)];
    ///
    /// let (successes, failures): (Vec<_>, Vec<_>) = successes_and_failures
    ///     .into_iter()
    ///     .partition_result();
    ///
    /// assert_eq!(successes, [1, 2]);
    /// assert_eq!(failures, [false, true]);
    /// ```
    fn partition_result<A, B, T, E>(self) -> (A, B)
        where
            Self: Iterator<Item = Result<T, E>> + Sized,
            A: Default + Extend<T>,
            B: Default + Extend<E>,
    {
        self.partition_map(|r| match r {
            Ok(v) => Either::Left(v),
            Err(v) => Either::Right(v),
        })
    }

    /// Return a `HashMap` of keys mapped to `Vec`s of values. Keys and values
    /// are taken from `(Key, Value)` tuple pairs yielded by the input iterator.
    ///
    /// Essentially a shorthand for `.into_grouping_map().collect::<Vec<_>>()`.
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let data = vec![(0, 10), (2, 12), (3, 13), (0, 20), (3, 33), (2, 42)];
    /// let lookup = data.into_iter().into_group_map();
    ///
    /// assert_eq!(lookup[&0], vec![10, 20]);
    /// assert_eq!(lookup.get(&1), None);
    /// assert_eq!(lookup[&2], vec![12, 42]);
    /// assert_eq!(lookup[&3], vec![13, 33]);
    /// ```
    #[cfg(feature = "use_std")]
    fn into_group_map<K, V>(self) -> HashMap<K, Vec<V>>
        where Self: Iterator<Item=(K, V)> + Sized,
              K: Hash + Eq,
    {
        group_map::into_group_map(self)
    }

    /// Return an `Iterator` on a `HashMap`. Keys mapped to `Vec`s of values. The key is specified
    /// in the closure.
    ///
    /// Essentially a shorthand for `.into_grouping_map_by(f).collect::<Vec<_>>()`.
    ///
    /// ```
    /// use itertools::Itertools;
    /// use std::collections::HashMap;
    ///
    /// let data = vec![(0, 10), (2, 12), (3, 13), (0, 20), (3, 33), (2, 42)];
    /// let lookup: HashMap<u32,Vec<(u32, u32)>> =
    ///     data.clone().into_iter().into_group_map_by(|a| a.0);
    ///
    /// assert_eq!(lookup[&0], vec![(0,10),(0,20)]);
    /// assert_eq!(lookup.get(&1), None);
    /// assert_eq!(lookup[&2], vec![(2,12), (2,42)]);
    /// assert_eq!(lookup[&3], vec![(3,13), (3,33)]);
    ///
    /// assert_eq!(
    ///     data.into_iter()
    ///         .into_group_map_by(|x| x.0)
    ///         .into_iter()
    ///         .map(|(key, values)| (key, values.into_iter().fold(0,|acc, (_,v)| acc + v )))
    ///         .collect::<HashMap<u32,u32>>()[&0],
    ///     30,
    /// );
    /// ```
    #[cfg(feature = "use_std")]
    fn into_group_map_by<K, V, F>(self, f: F) -> HashMap<K, Vec<V>>
        where
            Self: Iterator<Item=V> + Sized,
            K: Hash + Eq,
            F: Fn(&V) -> K,
    {
        group_map::into_group_map_by(self, f)
    }

    /// Constructs a `GroupingMap` to be used later with one of the efficient 
    /// group-and-fold operations it allows to perform.
    /// 
    /// The input iterator must yield item in the form of `(K, V)` where the
    /// value of type `K` will be used as key to identify the groups and the
    /// value of type `V` as value for the folding operation.
    /// 
    /// See [`GroupingMap`] for more informations
    /// on what operations are available.
    #[cfg(feature = "use_std")]
    fn into_grouping_map<K, V>(self) -> GroupingMap<Self>
        where Self: Iterator<Item=(K, V)> + Sized,
              K: Hash + Eq,
    {
        grouping_map::new(self)
    }

    /// Constructs a `GroupingMap` to be used later with one of the efficient 
    /// group-and-fold operations it allows to perform.
    /// 
    /// The values from this iterator will be used as values for the folding operation
    /// while the keys will be obtained from the values by calling `key_mapper`.
    /// 
    /// See [`GroupingMap`] for more informations
    /// on what operations are available.
    #[cfg(feature = "use_std")]
    fn into_grouping_map_by<K, V, F>(self, key_mapper: F) -> GroupingMapBy<Self, F>
        where Self: Iterator<Item=V> + Sized,
              K: Hash + Eq,
              F: FnMut(&V) -> K
    {
        grouping_map::new(grouping_map::MapForGrouping::new(self, key_mapper))
    }

    /// Return the minimum and maximum elements in the iterator.
    ///
    /// The return type `MinMaxResult` is an enum of three variants:
    ///
    /// - `NoElements` if the iterator is empty.
    /// - `OneElement(x)` if the iterator has exactly one element.
    /// - `MinMax(x, y)` is returned otherwise, where `x <= y`. Two
    ///    values are equal if and only if there is more than one
    ///    element in the iterator and all elements are equal.
    ///
    /// On an iterator of length `n`, `minmax` does `1.5 * n` comparisons,
    /// and so is faster than calling `min` and `max` separately which does
    /// `2 * n` comparisons.
    ///
    /// # Examples
    ///
    /// ```
    /// use itertools::Itertools;
    /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax};
    ///
    /// let a: [i32; 0] = [];
    /// assert_eq!(a.iter().minmax(), NoElements);
    ///
    /// let a = [1];
    /// assert_eq!(a.iter().minmax(), OneElement(&1));
    ///
    /// let a = [1, 2, 3, 4, 5];
    /// assert_eq!(a.iter().minmax(), MinMax(&1, &5));
    ///
    /// let a = [1, 1, 1, 1];
    /// assert_eq!(a.iter().minmax(), MinMax(&1, &1));
    /// ```
    ///
    /// The elements can be floats but no particular result is guaranteed
    /// if an element is NaN.
    fn minmax(self) -> MinMaxResult<Self::Item>
        where Self: Sized, Self::Item: PartialOrd
    {
        minmax::minmax_impl(self, |_| (), |x, y, _, _| x < y)
    }

    /// Return the minimum and maximum element of an iterator, as determined by
    /// the specified function.
    ///
    /// The return value is a variant of [`MinMaxResult`] like for [`.minmax()`](Itertools::minmax).
    ///
    /// For the minimum, the first minimal element is returned.  For the maximum,
    /// the last maximal element wins.  This matches the behavior of the standard
    /// [`Iterator::min`] and [`Iterator::max`] methods.
    ///
    /// The keys can be floats but no particular result is guaranteed
    /// if a key is NaN.
    fn minmax_by_key<K, F>(self, key: F) -> MinMaxResult<Self::Item>
        where Self: Sized, K: PartialOrd, F: FnMut(&Self::Item) -> K
    {
        minmax::minmax_impl(self, key, |_, _, xk, yk| xk < yk)
    }

    /// Return the minimum and maximum element of an iterator, as determined by
    /// the specified comparison function.
    ///
    /// The return value is a variant of [`MinMaxResult`] like for [`.minmax()`](Itertools::minmax).
    ///
    /// For the minimum, the first minimal element is returned.  For the maximum,
    /// the last maximal element wins.  This matches the behavior of the standard
    /// [`Iterator::min`] and [`Iterator::max`] methods.
    fn minmax_by<F>(self, mut compare: F) -> MinMaxResult<Self::Item>
        where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering
    {
        minmax::minmax_impl(
            self,
            |_| (),
            |x, y, _, _| Ordering::Less == compare(x, y)
        )
    }

    /// Return the position of the maximum element in the iterator.
    ///
    /// If several elements are equally maximum, the position of the
    /// last of them is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let a: [i32; 0] = [];
    /// assert_eq!(a.iter().position_max(), None);
    ///
    /// let a = [-3, 0, 1, 5, -10];
    /// assert_eq!(a.iter().position_max(), Some(3));
    ///
    /// let a = [1, 1, -1, -1];
    /// assert_eq!(a.iter().position_max(), Some(1));
    /// ```
    fn position_max(self) -> Option<usize>
        where Self: Sized, Self::Item: Ord
    {
        self.enumerate()
            .max_by(|x, y| Ord::cmp(&x.1, &y.1))
            .map(|x| x.0)
    }

    /// Return the position of the maximum element in the iterator, as
    /// determined by the specified function.
    ///
    /// If several elements are equally maximum, the position of the
    /// last of them is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let a: [i32; 0] = [];
    /// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), None);
    ///
    /// let a = [-3_i32, 0, 1, 5, -10];
    /// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), Some(4));
    ///
    /// let a = [1_i32, 1, -1, -1];
    /// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), Some(3));
    /// ```
    fn position_max_by_key<K, F>(self, mut key: F) -> Option<usize>
        where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K
    {
        self.enumerate()
            .max_by(|x, y| Ord::cmp(&key(&x.1), &key(&y.1)))
            .map(|x| x.0)
    }

    /// Return the position of the maximum element in the iterator, as
    /// determined by the specified comparison function.
    ///
    /// If several elements are equally maximum, the position of the
    /// last of them is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let a: [i32; 0] = [];
    /// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), None);
    ///
    /// let a = [-3_i32, 0, 1, 5, -10];
    /// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), Some(3));
    ///
    /// let a = [1_i32, 1, -1, -1];
    /// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), Some(1));
    /// ```
    fn position_max_by<F>(self, mut compare: F) -> Option<usize>
        where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering
    {
        self.enumerate()
            .max_by(|x, y| compare(&x.1, &y.1))
            .map(|x| x.0)
    }

    /// Return the position of the minimum element in the iterator.
    ///
    /// If several elements are equally minimum, the position of the
    /// first of them is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let a: [i32; 0] = [];
    /// assert_eq!(a.iter().position_min(), None);
    ///
    /// let a = [-3, 0, 1, 5, -10];
    /// assert_eq!(a.iter().position_min(), Some(4));
    ///
    /// let a = [1, 1, -1, -1];
    /// assert_eq!(a.iter().position_min(), Some(2));
    /// ```
    fn position_min(self) -> Option<usize>
        where Self: Sized, Self::Item: Ord
    {
        self.enumerate()
            .min_by(|x, y| Ord::cmp(&x.1, &y.1))
            .map(|x| x.0)
    }

    /// Return the position of the minimum element in the iterator, as
    /// determined by the specified function.
    ///
    /// If several elements are equally minimum, the position of the
    /// first of them is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let a: [i32; 0] = [];
    /// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), None);
    ///
    /// let a = [-3_i32, 0, 1, 5, -10];
    /// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), Some(1));
    ///
    /// let a = [1_i32, 1, -1, -1];
    /// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), Some(0));
    /// ```
    fn position_min_by_key<K, F>(self, mut key: F) -> Option<usize>
        where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K
    {
        self.enumerate()
            .min_by(|x, y| Ord::cmp(&key(&x.1), &key(&y.1)))
            .map(|x| x.0)
    }

    /// Return the position of the minimum element in the iterator, as
    /// determined by the specified comparison function.
    ///
    /// If several elements are equally minimum, the position of the
    /// first of them is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use itertools::Itertools;
    ///
    /// let a: [i32; 0] = [];
    /// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), None);
    ///
    /// let a = [-3_i32, 0, 1, 5, -10];
    /// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), Some(4));
    ///
    /// let a = [1_i32, 1, -1, -1];
    /// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), Some(2));
    /// ```
    fn position_min_by<F>(self, mut compare: F) -> Option<usize>
        where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering
    {
        self.enumerate()
            .min_by(|x, y| compare(&x.1, &y.1))
            .map(|x| x.0)
    }

    /// Return the positions of the minimum and maximum elements in
    /// the iterator.
    ///
    /// The return type [`MinMaxResult`] is an enum of three variants:
    ///
    /// - `NoElements` if the iterator is empty.
    /// - `OneElement(xpos)` if the iterator has exactly one element.
    /// - `MinMax(xpos, ypos)` is returned otherwise, where the
    ///    element at `xpos` ≤ the element at `ypos`. While the
    ///    referenced elements themselves may be equal, `xpos` cannot
    ///    be equal to `ypos`.
    ///
    /// On an iterator of length `n`, `position_minmax` does `1.5 * n`
    /// comparisons, and so is faster than calling `positon_min` and
    /// `position_max` separately which does `2 * n` comparisons.
    ///
    /// For the minimum, if several elements are equally minimum, the
    /// position of the first of them is returned. For the maximum, if
    /// several elements are equally maximum, the position of the last
    /// of them is returned.
    ///
    /// The elements can be floats but no particular result is
    /// guaranteed if an element is NaN.
    ///
    /// # Examples
    ///
    /// ```
    /// use itertools::Itertools;
    /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax};
    ///
    /// let a: [i32; 0] = [];
    /// assert_eq!(a.iter().position_minmax(), NoElements);
    ///
    /// let a = [10];
    /// assert_eq!(a.iter().position_minmax(), OneElement(0));
    ///
    /// let a = [-3, 0, 1, 5, -10];
    /// assert_eq!(a.iter().position_minmax(), MinMax(4, 3));
    ///
    /// let a = [1, 1, -1, -1];
    /// assert_eq!(a.iter().position_minmax(), MinMax(2, 1));
    /// ```
    fn position_minmax(self) -> MinMaxResult<usize>
        where Self: Sized, Self::Item: PartialOrd
    {
        use crate::MinMaxResult::{NoElements, OneElement, MinMax};
        match minmax::minmax_impl(self.enumerate(), |_| (), |x, y, _, _| x.1 < y.1) {
            NoElements => NoElements,
            OneElement(x) => OneElement(x.0),
            MinMax(x, y) => MinMax(x.0, y.0),
        }
    }

    /// Return the postions of the minimum and maximum elements of an
    /// iterator, as determined by the specified function.
    ///
    /// The return value is a variant of [`MinMaxResult`] like for
    /// [`position_minmax`].
    ///
    /// For the minimum, if several elements are equally minimum, the
    /// position of the first of them is returned. For the maximum, if
    /// several elements are equally maximum, the position of the last
    /// of them is returned.
    ///
    /// The keys can be floats but no particular result is guaranteed
    /// if a key is NaN.
    ///
    /// # Examples
    ///
    /// ```
    /// use itertools::Itertools;
    /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax};
    ///
    /// let a: [i32; 0] = [];
    /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), NoElements);
    ///
    /// let a = [10_i32];
    /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), OneElement(0));
    ///
    /// let a = [-3_i32, 0, 1, 5, -10];
    /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), MinMax(1, 4));
    ///
    /// let a = [1_i32, 1, -1, -1];
    /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), MinMax(0, 3));
    /// ```
    ///
    /// [`position_minmax`]: Self::position_minmax
    fn position_minmax_by_key<K, F>(self, mut key: F) -> MinMaxResult<usize>
        where Self: Sized, K: PartialOrd, F: FnMut(&Self::Item) -> K
    {
        use crate::MinMaxResult::{NoElements, OneElement, MinMax};
        match self.enumerate().minmax_by_key(|e| key(&e.1)) {
            NoElements => NoElements,
            OneElement(x) => OneElement(x.0),
            MinMax(x, y) => MinMax(x.0, y.0),
        }
    }

    /// Return the postions of the minimum and maximum elements of an
    /// iterator, as determined by the specified comparison function.
    ///
    /// The return value is a variant of [`MinMaxResult`] like for
    /// [`position_minmax`].
    ///
    /// For the minimum, if several elements are equally minimum, the
    /// position of the first of them is returned. For the maximum, if
    /// several elements are equally maximum, the position of the last
    /// of them is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use itertools::Itertools;
    /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax};
    ///
    /// let a: [i32; 0] = [];
    /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), NoElements);
    ///
    /// let a = [10_i32];
    /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), OneElement(0));
    ///
    /// let a = [-3_i32, 0, 1, 5, -10];
    /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), MinMax(4, 3));
    ///
    /// let a = [1_i32, 1, -1, -1];
    /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), MinMax(2, 1));
    /// ```
    ///
    /// [`position_minmax`]: Self::position_minmax
    fn position_minmax_by<F>(self, mut compare: F) -> MinMaxResult<usize>
        where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering
    {
        use crate::MinMaxResult::{NoElements, OneElement, MinMax};
        match self.enumerate().minmax_by(|x, y| compare(&x.1, &y.1)) {
            NoElements => NoElements,
            OneElement(x) => OneElement(x.0),
            MinMax(x, y) => MinMax(x.0, y.0),
        }
    }

    /// If the iterator yields exactly one element, that element will be returned, otherwise
    /// an error will be returned containing an iterator that has the same output as the input
    /// iterator.
    ///
    /// This provides an additional layer of validation over just calling `Iterator::next()`.
    /// If your assumption that there should only be one element yielded is false this provides
    /// the opportunity to detect and handle that, preventing errors at a distance.
    ///
    /// # Examples
    /// ```
    /// use itertools::Itertools;
    ///
    /// assert_eq!((0..10).filter(|&x| x == 2).exactly_one().unwrap(), 2);
    /// assert!((0..10).filter(|&x| x > 1 && x < 4).exactly_one().unwrap_err().eq(2..4));
    /// assert!((0..10).filter(|&x| x > 1 && x < 5).exactly_one().unwrap_err().eq(2..5));
    /// assert!((0..10).filter(|&_| false).exactly_one().unwrap_err().eq(0..0));
    /// ```
    fn exactly_one(mut self) -> Result<Self::Item, ExactlyOneError<Self>>
    where
        Self: Sized,
    {
        match self.next() {
            Some(first) => {
                match self.next() {
                    Some(second) => {
                        Err(ExactlyOneError::new(Some(Either::Left([first, second])), self))
                    }
                    None => {
                        Ok(first)
                    }
                }
            }
            None => Err(ExactlyOneError::new(None, self)),
        }
    }

    /// If the iterator yields no elements, Ok(None) will be returned. If the iterator yields
    /// exactly one element, that element will be returned, otherwise an error will be returned
    /// containing an iterator that has the same output as the input iterator.
    ///
    /// This provides an additional layer of validation over just calling `Iterator::next()`.
    /// If your assumption that there should be at most one element yielded is false this provides
    /// the opportunity to detect and handle that, preventing errors at a distance.
    ///
    /// # Examples
    /// ```
    /// use itertools::Itertools;
    ///
    /// assert_eq!((0..10).filter(|&x| x == 2).at_most_one().unwrap(), Some(2));
    /// assert!((0..10).filter(|&x| x > 1 && x < 4).at_most_one().unwrap_err().eq(2..4));
    /// assert!((0..10).filter(|&x| x > 1 && x < 5).at_most_one().unwrap_err().eq(2..5));
    /// assert_eq!((0..10).filter(|&_| false).at_most_one().unwrap(), None);
    /// ```
    fn at_most_one(mut self) -> Result<Option<Self::Item>, ExactlyOneError<Self>>
    where
        Self: Sized,
    {
        match self.next() {
            Some(first) => {
                match self.next() {
                    Some(second) => {
                        Err(ExactlyOneError::new(Some(Either::Left([first, second])), self))
                    }
                    None => {
                        Ok(Some(first))
                    }
                }
            }
            None => Ok(None),
        }
    }

    /// An iterator adaptor that allows the user to peek at multiple `.next()`
    /// values without advancing the base iterator.
    ///
    /// # Examples
    /// ```
    /// use itertools::Itertools;
    ///
    /// let mut iter = (0..10).multipeek();
    /// assert_eq!(iter.peek(), Some(&0));
    /// assert_eq!(iter.peek(), Some(&1));
    /// assert_eq!(iter.peek(), Some(&2));
    /// assert_eq!(iter.next(), Some(0));
    /// assert_eq!(iter.peek(), Some(&1));
    /// ```
    #[cfg(feature = "use_alloc")]
    fn multipeek(self) -> MultiPeek<Self>
    where
        Self: Sized,
    {
        multipeek_impl::multipeek(self)
    }

    /// Collect the items in this iterator and return a `HashMap` which
    /// contains each item that appears in the iterator and the number
    /// of times it appears.
    ///
    /// # Examples
    /// ```
    /// # use itertools::Itertools;
    /// let counts = [1, 1, 1, 3, 3, 5].into_iter().counts();
    /// assert_eq!(counts[&1], 3);
    /// assert_eq!(counts[&3], 2);
    /// assert_eq!(counts[&5], 1);
    /// assert_eq!(counts.get(&0), None);
    /// ```
    #[cfg(feature = "use_std")]
    fn counts(self) -> HashMap<Self::Item, usize>
    where
        Self: Sized,
        Self::Item: Eq + Hash,
    {
        let mut counts = HashMap::new();
        self.for_each(|item| *counts.entry(item).or_default() += 1);
        counts
    }

    /// Collect the items in this iterator and return a `HashMap` which
    /// contains each item that appears in the iterator and the number
    /// of times it appears,
    /// determining identity using a keying function.
    ///
    /// ```
    /// # use itertools::Itertools;
    /// struct Character {
    ///   first_name: &'static str,
    ///   last_name:  &'static str,
    /// }
    /// 
    /// let characters =
    ///     vec![
    ///         Character { first_name: "Amy",   last_name: "Pond"      },
    ///         Character { first_name: "Amy",   last_name: "Wong"      },
    ///         Character { first_name: "Amy",   last_name: "Santiago"  },
    ///         Character { first_name: "James", last_name: "Bond"      },
    ///         Character { first_name: "James", last_name: "Sullivan"  },
    ///         Character { first_name: "James", last_name: "Norington" },
    ///         Character { first_name: "James", last_name: "Kirk"      },
    ///     ];
    /// 
    /// let first_name_frequency = 
    ///     characters
    ///         .into_iter()
    ///         .counts_by(|c| c.first_name);
    ///     
    /// assert_eq!(first_name_frequency["Amy"], 3);
    /// assert_eq!(first_name_frequency["James"], 4);
    /// assert_eq!(first_name_frequency.contains_key("Asha"), false);
    /// ```
    #[cfg(feature = "use_std")]
    fn counts_by<K, F>(self, f: F) -> HashMap<K, usize>
    where
        Self: Sized,
        K: Eq + Hash,
        F: FnMut(Self::Item) -> K,
    {
        self.map(f).counts()
    }

    /// Converts an iterator of tuples into a tuple of containers.
    ///
    /// `unzip()` consumes an entire iterator of n-ary tuples, producing `n` collections, one for each
    /// column.
    ///
    /// This function is, in some sense, the opposite of [`multizip`].
    /// 
    /// ```
    /// use itertools::Itertools;
    ///
    /// let inputs = vec![(1, 2, 3), (4, 5, 6), (7, 8, 9)];
    ///
    /// let (a, b, c): (Vec<_>, Vec<_>, Vec<_>) = inputs
    ///     .into_iter()
    ///     .multiunzip();
    ///
    /// assert_eq!(a, vec![1, 4, 7]);
    /// assert_eq!(b, vec![2, 5, 8]);
    /// assert_eq!(c, vec![3, 6, 9]);
    /// ```
    fn multiunzip<FromI>(self) -> FromI
    where
        Self: Sized + MultiUnzip<FromI>,
    {
        MultiUnzip::multiunzip(self)
    }
}

impl<T: ?Sized> Itertools for T where T: Iterator { }

/// Return `true` if both iterables produce equal sequences
/// (elements pairwise equal and sequences of the same length),
/// `false` otherwise.
///
/// This is an [`IntoIterator`] enabled function that is similar to the standard
/// library method [`Iterator::eq`].
///
/// ```
/// assert!(itertools::equal(vec![1, 2, 3], 1..4));
/// assert!(!itertools::equal(&[0, 0], &[0, 0, 0]));
/// ```
pub fn equal<I, J>(a: I, b: J) -> bool
    where I: IntoIterator,
          J: IntoIterator,
          I::Item: PartialEq<J::Item>
{
    let mut ia = a.into_iter();
    let mut ib = b.into_iter();
    loop {
        match ia.next() {
            Some(x) => match ib.next() {
                Some(y) => if x != y { return false; },
                None => return false,
            },
            None => return ib.next().is_none()
        }
    }
}

/// Assert that two iterables produce equal sequences, with the same
/// semantics as [`equal(a, b)`](equal).
///
/// **Panics** on assertion failure with a message that shows the
/// two iteration elements.
///
/// ```ignore
/// assert_equal("exceed".split('c'), "excess".split('c'));
/// // ^PANIC: panicked at 'Failed assertion Some("eed") == Some("ess") for iteration 1',
/// ```
pub fn assert_equal<I, J>(a: I, b: J)
    where I: IntoIterator,
          J: IntoIterator,
          I::Item: fmt::Debug + PartialEq<J::Item>,
          J::Item: fmt::Debug,
{
    let mut ia = a.into_iter();
    let mut ib = b.into_iter();
    let mut i = 0;
    loop {
        match (ia.next(), ib.next()) {
            (None, None) => return,
            (a, b) => {
                let equal = match (&a, &b) {
                    (&Some(ref a), &Some(ref b)) => a == b,
                    _ => false,
                };
                assert!(equal, "Failed assertion {a:?} == {b:?} for iteration {i}",
                        i=i, a=a, b=b);
                i += 1;
            }
        }
    }
}

/// Partition a sequence using predicate `pred` so that elements
/// that map to `true` are placed before elements which map to `false`.
///
/// The order within the partitions is arbitrary.
///
/// Return the index of the split point.
///
/// ```
/// use itertools::partition;
///
/// # // use repeated numbers to not promise any ordering
/// let mut data = [7, 1, 1, 7, 1, 1, 7];
/// let split_index = partition(&mut data, |elt| *elt >= 3);
///
/// assert_eq!(data, [7, 7, 7, 1, 1, 1, 1]);
/// assert_eq!(split_index, 3);
/// ```
pub fn partition<'a, A: 'a, I, F>(iter: I, mut pred: F) -> usize
    where I: IntoIterator<Item = &'a mut A>,
          I::IntoIter: DoubleEndedIterator,
          F: FnMut(&A) -> bool
{
    let mut split_index = 0;
    let mut iter = iter.into_iter();
    'main: while let Some(front) = iter.next() {
        if !pred(front) {
            loop {
                match iter.next_back() {
                    Some(back) => if pred(back) {
                        std::mem::swap(front, back);
                        break;
                    },
                    None => break 'main,
                }
            }
        }
        split_index += 1;
    }
    split_index
}

/// An enum used for controlling the execution of `fold_while`.
///
/// See [`.fold_while()`](Itertools::fold_while) for more information.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum FoldWhile<T> {
    /// Continue folding with this value
    Continue(T),
    /// Fold is complete and will return this value
    Done(T),
}

impl<T> FoldWhile<T> {
    /// Return the value in the continue or done.
    pub fn into_inner(self) -> T {
        match self {
            FoldWhile::Continue(x) | FoldWhile::Done(x) => x,
        }
    }

    /// Return true if `self` is `Done`, false if it is `Continue`.
    pub fn is_done(&self) -> bool {
        match *self {
            FoldWhile::Continue(_) => false,
            FoldWhile::Done(_) => true,
        }
    }
}