1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
use crate::sys::exports::{ExportError, Exportable};
use crate::sys::externals::Extern;
use crate::sys::store::Store;
use crate::sys::{MemoryType, MemoryView};
use loupe::MemoryUsage;
use std::convert::TryInto;
use std::slice;
use std::sync::Arc;
use wasmer_engine::Export;
use wasmer_types::{Pages, ValueType};
use wasmer_vm::{MemoryError, VMMemory};
/// A WebAssembly `memory` instance.
///
/// A memory instance is the runtime representation of a linear memory.
/// It consists of a vector of bytes and an optional maximum size.
///
/// The length of the vector always is a multiple of the WebAssembly
/// page size, which is defined to be the constant 65536 – abbreviated 64Ki.
/// Like in a memory type, the maximum size in a memory instance is
/// given in units of this page size.
///
/// A memory created by the host or in WebAssembly code will be accessible and
/// mutable from both host and WebAssembly.
///
/// Spec: <https://webassembly.github.io/spec/core/exec/runtime.html#memory-instances>
#[derive(Debug, MemoryUsage)]
pub struct Memory {
store: Store,
vm_memory: VMMemory,
}
impl Memory {
/// Creates a new host `Memory` from the provided [`MemoryType`].
///
/// This function will construct the `Memory` using the store
/// [`BaseTunables`][crate::sys::BaseTunables].
///
/// # Example
///
/// ```
/// # use wasmer::{Memory, MemoryType, Pages, Store, Type, Value};
/// # let store = Store::default();
/// #
/// let m = Memory::new(&store, MemoryType::new(1, None, false)).unwrap();
/// ```
pub fn new(store: &Store, ty: MemoryType) -> Result<Self, MemoryError> {
let tunables = store.tunables();
let style = tunables.memory_style(&ty);
let memory = tunables.create_host_memory(&ty, &style)?;
Ok(Self {
store: store.clone(),
vm_memory: VMMemory {
from: memory,
// We are creating it from the host, and therefore there is no
// associated instance with this memory
instance_ref: None,
},
})
}
/// Returns the [`MemoryType`] of the `Memory`.
///
/// # Example
///
/// ```
/// # use wasmer::{Memory, MemoryType, Pages, Store, Type, Value};
/// # let store = Store::default();
/// #
/// let mt = MemoryType::new(1, None, false);
/// let m = Memory::new(&store, mt).unwrap();
///
/// assert_eq!(m.ty(), mt);
/// ```
pub fn ty(&self) -> MemoryType {
self.vm_memory.from.ty()
}
/// Returns the [`Store`] where the `Memory` belongs.
///
/// # Example
///
/// ```
/// # use wasmer::{Memory, MemoryType, Pages, Store, Type, Value};
/// # let store = Store::default();
/// #
/// let m = Memory::new(&store, MemoryType::new(1, None, false)).unwrap();
///
/// assert_eq!(m.store(), &store);
/// ```
pub fn store(&self) -> &Store {
&self.store
}
/// Retrieve a slice of the memory contents.
///
/// # Safety
///
/// Until the returned slice is dropped, it is undefined behaviour to
/// modify the memory contents in any way including by calling a wasm
/// function that writes to the memory or by resizing the memory.
pub unsafe fn data_unchecked(&self) -> &[u8] {
self.data_unchecked_mut()
}
/// Retrieve a mutable slice of the memory contents.
///
/// # Safety
///
/// This method provides interior mutability without an UnsafeCell. Until
/// the returned value is dropped, it is undefined behaviour to read or
/// write to the pointed-to memory in any way except through this slice,
/// including by calling a wasm function that reads the memory contents or
/// by resizing this Memory.
#[allow(clippy::mut_from_ref)]
pub unsafe fn data_unchecked_mut(&self) -> &mut [u8] {
let definition = self.vm_memory.from.vmmemory();
let def = definition.as_ref();
slice::from_raw_parts_mut(def.base, def.current_length.try_into().unwrap())
}
/// Returns the pointer to the raw bytes of the `Memory`.
pub fn data_ptr(&self) -> *mut u8 {
let definition = self.vm_memory.from.vmmemory();
let def = unsafe { definition.as_ref() };
def.base
}
/// Returns the size (in bytes) of the `Memory`.
pub fn data_size(&self) -> u64 {
let definition = self.vm_memory.from.vmmemory();
let def = unsafe { definition.as_ref() };
def.current_length.try_into().unwrap()
}
/// Returns the size (in [`Pages`]) of the `Memory`.
///
/// # Example
///
/// ```
/// # use wasmer::{Memory, MemoryType, Pages, Store, Type, Value};
/// # let store = Store::default();
/// #
/// let m = Memory::new(&store, MemoryType::new(1, None, false)).unwrap();
///
/// assert_eq!(m.size(), Pages(1));
/// ```
pub fn size(&self) -> Pages {
self.vm_memory.from.size()
}
/// Grow memory by the specified amount of WebAssembly [`Pages`] and return
/// the previous memory size.
///
/// # Example
///
/// ```
/// # use wasmer::{Memory, MemoryType, Pages, Store, Type, Value, WASM_MAX_PAGES};
/// # let store = Store::default();
/// #
/// let m = Memory::new(&store, MemoryType::new(1, Some(3), false)).unwrap();
/// let p = m.grow(2).unwrap();
///
/// assert_eq!(p, Pages(1));
/// assert_eq!(m.size(), Pages(3));
/// ```
///
/// # Errors
///
/// Returns an error if memory can't be grown by the specified amount
/// of pages.
///
/// ```should_panic
/// # use wasmer::{Memory, MemoryType, Pages, Store, Type, Value, WASM_MAX_PAGES};
/// # let store = Store::default();
/// #
/// let m = Memory::new(&store, MemoryType::new(1, Some(1), false)).unwrap();
///
/// // This results in an error: `MemoryError::CouldNotGrow`.
/// let s = m.grow(1).unwrap();
/// ```
pub fn grow<IntoPages>(&self, delta: IntoPages) -> Result<Pages, MemoryError>
where
IntoPages: Into<Pages>,
{
self.vm_memory.from.grow(delta.into())
}
/// Return a "view" of the currently accessible memory. By
/// default, the view is unsynchronized, using regular memory
/// accesses. You can force a memory view to use atomic accesses
/// by calling the [`MemoryView::atomically`] method.
///
/// # Notes:
///
/// This method is safe (as in, it won't cause the host to crash or have UB),
/// but it doesn't obey rust's rules involving data races, especially concurrent ones.
/// Therefore, if this memory is shared between multiple threads, a single memory
/// location can be mutated concurrently without synchronization.
///
/// # Usage:
///
/// ```
/// # use wasmer::{Memory, MemoryView};
/// # use std::{cell::Cell, sync::atomic::Ordering};
/// # fn view_memory(memory: Memory) {
/// // Without synchronization.
/// let view: MemoryView<u8> = memory.view();
/// for byte in view[0x1000 .. 0x1010].iter().map(Cell::get) {
/// println!("byte: {}", byte);
/// }
///
/// // With synchronization.
/// let atomic_view = view.atomically();
/// for byte in atomic_view[0x1000 .. 0x1010].iter().map(|atom| atom.load(Ordering::SeqCst)) {
/// println!("byte: {}", byte);
/// }
/// # }
/// ```
pub fn view<T: ValueType>(&self) -> MemoryView<T> {
let base = self.data_ptr();
let length = self.size().bytes().0 / std::mem::size_of::<T>();
unsafe { MemoryView::new(base as _, length as u32) }
}
/// A shortcut to [`Self::view::<u8>`][self::view].
///
/// This code is going to be refactored. Use it as your own risks.
#[doc(hidden)]
pub fn uint8view(&self) -> MemoryView<u8> {
self.view()
}
pub(crate) fn from_vm_export(store: &Store, vm_memory: VMMemory) -> Self {
Self {
store: store.clone(),
vm_memory,
}
}
/// Returns whether or not these two memories refer to the same data.
///
/// # Example
///
/// ```
/// # use wasmer::{Memory, MemoryType, Store, Value};
/// # let store = Store::default();
/// #
/// let m = Memory::new(&store, MemoryType::new(1, None, false)).unwrap();
///
/// assert!(m.same(&m));
/// ```
pub fn same(&self, other: &Self) -> bool {
Arc::ptr_eq(&self.vm_memory.from, &other.vm_memory.from)
}
/// Get access to the backing VM value for this extern. This function is for
/// tests it should not be called by users of the Wasmer API.
///
/// # Safety
/// This function is unsafe to call outside of tests for the wasmer crate
/// because there is no stability guarantee for the returned type and we may
/// make breaking changes to it at any time or remove this method.
#[doc(hidden)]
pub unsafe fn get_vm_memory(&self) -> &VMMemory {
&self.vm_memory
}
}
impl Clone for Memory {
fn clone(&self) -> Self {
let mut vm_memory = self.vm_memory.clone();
vm_memory.upgrade_instance_ref().unwrap();
Self {
store: self.store.clone(),
vm_memory,
}
}
}
impl<'a> Exportable<'a> for Memory {
fn to_export(&self) -> Export {
self.vm_memory.clone().into()
}
fn get_self_from_extern(_extern: &'a Extern) -> Result<&'a Self, ExportError> {
match _extern {
Extern::Memory(memory) => Ok(memory),
_ => Err(ExportError::IncompatibleType),
}
}
fn into_weak_instance_ref(&mut self) {
self.vm_memory
.instance_ref
.as_mut()
.map(|v| *v = v.downgrade());
}
}