1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
//! Port of the `Box<[T]>` function API.
use crate::{
boxed::BitBox,
order::BitOrder,
pointer::BitPtr,
slice::BitSlice,
store::BitStore,
vec::BitVec,
};
use core::{
marker::Unpin,
mem::ManuallyDrop,
pin::Pin,
};
use tap::pipe::Pipe;
impl<O, T> BitBox<O, T>
where
O: BitOrder,
T: BitStore,
{
/// Allocates memory on the heap and copies `x` into it.
///
/// This doesn’t actually allocate if `x` is zero-length.
///
/// # Original
///
/// [`Box::new`](https://doc.rust-lang.org/alloc/boxed/struct.Box.html#method.new)
///
/// # API Differences
///
/// `Box::<[T]>::new` does not exist, because `new` cannot take unsized
/// types by value. Instead, this takes a slice reference, and boxes the
/// referent slice.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let boxed = BitBox::new(bits![0; 5]);
/// ```
#[inline(always)]
#[cfg(not(tarpaulin_include))]
#[deprecated(since = "0.18.0", note = "Prefer `::from_bitslice`")]
pub fn new(x: &BitSlice<O, T>) -> Self {
Self::from_bitslice(x)
}
/// Constructs a new `Pin<BitBox<O, T>>`.
///
/// `BitSlice` is always `Unpin`, so this has no actual immobility effect.
///
/// # Original
///
/// [`Box::pin`](https://doc.rust-lang.org/alloc/boxed/struct.Box.html#method.pin)
///
/// # API Differences
///
/// As with `::new`, this only exists on `Box` when `T` is not unsized. This
/// takes a slice reference, and pins the referent slice.
#[inline]
pub fn pin(x: &BitSlice<O, T>) -> Pin<Self>
where
O: Unpin,
T: Unpin,
{
x.pipe(Self::from_bitslice).pipe(Pin::new)
}
/// Constructs a box from a raw pointer.
///
/// After calling this function, the raw pointer is owned by the
/// resulting `BitBox`. Specifically, the `Box` destructor will free the
/// allocated memory. For this to be safe, the memory must have been
/// allocated in accordance with the [memory layout] used by `BitBox`.
///
/// # Original
///
/// [`Box::from_raw`](https://doc.rust-lang.org/alloc/boxed/struct.Box.html#method.from_raw)
///
/// # Safety
///
/// This function is unsafe because improper use may lead to
/// memory problems. For example, a double-free may occur if the
/// function is called twice on the same raw pointer.
///
/// # Examples
///
/// Recreate a `BitBox` which was previously converted to a raw pointer
/// using [`BitBox::into_raw`]:
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let x = bitbox![0; 10];
/// let ptr = BitBox::into_raw(x);
/// let x = unsafe { BitBox::from_raw(ptr) };
/// ```
///
/// [memory layout]: https://doc.rust-lang.org/alloc/boxed/index.html#memory-layout
/// [`Layout`]: https://doc.rust-lang.org/alloc/struct.Layout.html
/// [`BitBox::into_raw`]: #method.into_raw
#[inline]
pub unsafe fn from_raw(raw: *mut BitSlice<O, T>) -> Self {
raw.pipe(BitPtr::from_bitslice_ptr_mut)
.to_nonnull()
.pipe(|pointer| Self { pointer })
}
/// Consumes the `BitBox`, returning a wrapped raw pointer.
///
/// The pointer will be properly aligned and non-null.
///
/// After calling this function, the caller is responsible for the memory
/// previously managed by the `BitBox`. In particular, the caller should
/// properly release the memory by converting the pointer back into a
/// `BitBox` with the [`BitBox::from_raw`] function, allowing the `BitBox`
/// destructor to perform the cleanup.
///
/// Note: this is an associated function, which means that you have to call
/// it as `BitBox::into_raw(b)` instead of `b.into_raw()`. This is to match
/// layout with the standard library’s `Box` API; there will never be a name
/// conflict with `BitSlice`.
///
/// # Original
///
/// [`Box::into_raw`](https://doc.rust-lang.org/alloc/boxed/struct.Box.html#method.into_raw)
///
/// # Examples
///
/// Converting the raw pointer back into a `BitBox` with
/// [`BitBox::from_raw`] for automatic cleanup:
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let b = BitBox::new(bits![Msb0, u32; 0; 32]);
/// let ptr = BitBox::into_raw(b);
/// let b = unsafe { BitBox::from_raw(ptr) };
/// ```
///
/// [`BitBox::from_raw`]: #method.from_raw
#[cfg_attr(not(tarpaulin), inline(always))]
pub fn into_raw(b: Self) -> *mut BitSlice<O, T> {
Self::leak(b)
}
/// Consumes and leaks the `BitBox`, returning a mutable reference,
/// `&'a mut BitSlice<O, T>`. Note that the memory region `[T]` must outlive
/// the chosen lifetime `'a`.
///
/// This function is mainly useful for bit regions that live for the
/// remainder of the program’s life. Dropping the returned reference will
/// cause a memory leak. If this is not acceptable, the reference should
/// first be wrapped with the [`BitBox::from_raw`] function, producing a
/// `BitBox`. This `BitBox` can then be dropped which will properly
/// deallocate the memory.
///
/// Note: this is an associated function, which means that you have to call
/// it as `BitBox::leak(b)` instead of `b.leak()`. This is to match layout
/// with the standard library’s `Box` API; there will never be a name
/// conflict with `BitSlice`.
///
/// # Original
///
/// [`Box::leak`](https://doc.rust-lang.org/alloc/boxed/struct.Box.html#method.leak)
///
/// # Examples
///
/// Simple usage:
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let b = bitbox![LocalBits, u32; 0; 32];
/// let static_ref: &'static mut BitSlice<LocalBits, u32> = BitBox::leak(b);
/// static_ref.set(0, true);
/// assert_eq!(static_ref.count_ones(), 1);
/// ```
///
/// [`BitBox::from_raw`]: #method.from_raw
#[inline]
pub fn leak<'a>(b: Self) -> &'a mut BitSlice<O, T>
where T: 'a {
b.pipe(ManuallyDrop::new).bitptr().to_bitslice_mut()
}
/// Converts `self` into a vector without clones or allocation.
///
/// The resulting vector can be converted back into a box via `BitVec<O,
/// T>`’s `into_boxed_bitslice` method.
///
/// # Original
///
/// [`slice::into_vec`](https://doc.rust-lang.org/std/primitive.slice.html#method.into_vec)
///
/// # API Differences
///
/// Despite taking a `Box<[T]>` receiver, this function is written in an
/// `impl<T> [T]` block.
///
/// Rust does not allow the text
///
/// ```rust,ignore
/// impl<O, T> BitSlice<O, T> {
/// fn into_bitvec(self: BitBox<O, T>);
/// }
/// ```
///
/// to be written, and `BitBox` exists specifically because
/// `Box<BitSlice<>>` cannot be written either, so this function must be
/// implemented directly on `BitBox` rather than on `BitSlice` with a boxed
/// receiver.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bb = bitbox![0, 1, 0, 1];
/// let bv = bb.into_bitvec();
///
/// assert_eq!(bv, bitvec![0, 1, 0, 1]);
/// ```
#[inline]
pub fn into_bitvec(self) -> BitVec<O, T> {
let mut bitptr = self.bitptr();
let raw = self
// Disarm the `self` destructor
.pipe(ManuallyDrop::new)
// Extract the `Box<[T]>` handle, invalidating `self`
.with_box(|b| unsafe { ManuallyDrop::take(b) })
// The distribution guarantees this to be correct and in-place.
.into_vec()
// Disarm the `Vec<T>` destructor *also*.
.pipe(ManuallyDrop::new);
/* The distribution claims that `[T]::into_vec(Box<[T]>) -> Vec<T>` does
not alter the address of the heap allocation, and only modifies the
buffer handle. Nevertheless, update the bit-pointer with the address of
the vector as returned by this transformation Just In Case.
Inspection of the distribution’s implementation shows that the
conversion from `(buf, len)` to `(buf, cap, len)` is done by using the
slice length as the buffer capacity. However, this is *not* a behavior
guaranteed by the distribution, and so the pipeline above must remain in
place in the event that this behavior ever changes. It should compile
away to nothing, as it is almost entirely typesystem manipulation.
*/
unsafe {
bitptr.set_pointer(raw.as_ptr() as *const T as *mut T);
BitVec::from_raw_parts(bitptr.to_bitslice_ptr_mut(), raw.capacity())
}
}
}