1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
/*! Typed metadata of registers.
This module provides types which guarantee certain properties about working with
individual bits of registers.
The main advantage of the types in this module is that they provide
type-dependent range constrictions for index values, making it impossible to
have an index out of bounds for a register, and creating a sequence of type
transformations that give assurance about the continued validity of each value
in its surrounding context.
By eliminating public constructors from arbitrary integers, `bitvec` can
guarantee that only it can produce seed values, and only trusted functions can
transform their numeric values or types, until the program reaches the property
it requires. This chain of assurance means that operations that interact with
memory can be confident in the correctness of their actions and effects.
# Type Sequence
The library produces `BitIdx` values from region computation. These types cannot
be publicly constructed, and are only ever the result of pointer analysis. As
such, they rely on correctness of the memory regions provided to library entry
points, and those entry points can leverage the Rust type system to ensure
safety there.
`BitIdx` is transformed to `BitPos` through the `BitOrder` trait, which has an
associated verification function to prove that implementations are correct.
`BitPos` is the only type that can describe memory operations, and is used to
create selection masks of `BitSel` and `BitMask`.
!*/
use crate::{
mem::BitMemory,
order::BitOrder,
store::BitStore,
};
use core::{
any::type_name,
fmt::{
self,
Binary,
Debug,
Display,
Formatter,
},
iter::{
FusedIterator,
Sum,
},
marker::PhantomData,
ops::{
BitAnd,
BitOr,
Not,
},
};
use radium::marker::BitOps;
#[cfg(feature = "serde")]
use core::convert::TryFrom;
macro_rules! make {
(idx $e:expr) => {
BitIdx {
idx: $e,
_ty: PhantomData,
}
};
(tail $e:expr) => {
BitTail {
end: $e,
_ty: PhantomData,
}
};
(pos $e:expr) => {
BitPos {
pos: $e,
_ty: PhantomData,
}
};
(sel $e:expr) => {
BitSel { sel: $e }
};
(mask $e:expr) => {
BitMask { mask: $e }
};
}
/// Marks that an integer can be used in a processor register.
pub trait BitRegister: BitMemory + BitOps + BitStore {}
macro_rules! register {
($($t:ty),+ $(,)?) => { $(
impl BitRegister for $t {
}
)* };
}
register!(u8, u16, u32);
/** `u64` can only be used as a register on processors whose word size is at
least 64 bits.
This implementation is not present on targets with 32-bit processor words.
**/
#[cfg(target_pointer_width = "64")]
impl BitRegister for u64 {
}
register!(usize);
/** A semantic index of a single bit within a register `R`.
This type is a counter in the range `0 .. R::BITS`, and marks the semantic
position of a bit according to some [`BitOrder`] implementation. As an abstract
counter, it can be used in arithmetic without having to go through `BitOrder`
translation to an electrical position.
# Type Parameters
- `R`: The register type that these values govern.
# Validity
Values of this type are required to be in the range `0 .. R::BITS`. Any value
outside this range will cause the program state to become invalid, and the
library’s behavior is unspecified. The library will never produce such an
invalid value.
# Construction
This type cannot be constructed outside the `bitvec` crate. `bitvec` will
construct safe values of this type, and allows users to view them and use them
to construct other index types from them. All values of this type constructed by
`bitvec` are known to be correct based on user input to the crate.
**/
// #[rustc_layout_scalar_valid_range_end(R::BITS)]
#[repr(transparent)]
#[derive(Clone, Copy, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct BitIdx<R>
where R: BitRegister
{
/// Semantic index counter within a register, constrained to `0 .. R::BITS`.
idx: u8,
/// Marker for the indexed type.
_ty: PhantomData<R>,
}
impl<R> BitIdx<R>
where R: BitRegister
{
/// The inclusive-maximum index.
pub(crate) const LAST: Self = make!(idx R::MASK);
/// The zero index.
pub(crate) const ZERO: Self = make!(idx 0);
/// Wraps a counter value as a known-good index into an `R` register.
///
/// # Parameters
///
/// - `idx`: A semantic index of a bit within an `R` register.
///
/// # Returns
///
/// If `idx` is outside the valid range `0 .. R::BITS`, this returns `None`;
/// otherwise, it returns a `BitIdx` wrapping the `idx` value.
#[inline]
#[doc(hidden)]
pub(crate) fn new(idx: u8) -> Option<Self> {
if idx >= R::BITS {
return None;
}
Some(make!(idx idx))
}
/// Wraps a counter value as an assumed-good index into an `R` register.
///
/// # Parameters
///
/// - `idx`: A semantic index of a bit within an `R` register.
///
/// # Returns
///
/// `idx` wrapped in a `BitIdx`.
///
/// # Safety
///
/// `idx` **must** be within the valid range `0 .. R::BITS`. In debug
/// builds, invalid `idx` values cause a panic; release builds do not check
/// the input.
#[inline]
#[doc(hidden)]
pub unsafe fn new_unchecked(idx: u8) -> Self {
debug_assert!(
idx < R::BITS,
"Bit index {} cannot exceed type width {}",
idx,
R::BITS
);
make!(idx idx)
}
/// Increments an index counter, wrapping at the back edge of the register.
///
/// # Parameters
///
/// - `self`: The index to increment.
///
/// # Returns
///
/// - `.0`: The next index after `self`.
/// - `.1`: Indicates that the new index is in the next register.
#[inline]
pub(crate) fn incr(self) -> (Self, bool) {
let next = self.idx + 1;
(make!(idx next & R::MASK), next == R::BITS)
}
/// Decrements an index counter, wrapping at the front edge of the register.
///
/// # Parameters
///
/// - `self`: The inedx to decrement.
///
/// # Returns
///
/// - `.0`: The previous index before `self`.
/// - `.1`: Indicates that the new index is in the previous register.
#[inline]
pub(crate) fn decr(self) -> (Self, bool) {
let next = self.idx.wrapping_sub(1);
(make!(idx next & R::MASK), self.idx == 0)
}
/// Computes the bit position corresponding to `self` under some ordering.
///
/// This forwards to `O::at::<R>`, and is the only public, safe, constructor
/// for a position counter.
#[inline(always)]
pub fn position<O>(self) -> BitPos<R>
where O: BitOrder {
O::at::<R>(self)
}
/// Computes the bit selector corresponding to `self` under an ordering.
///
/// This forwards to `O::select::<R>`, and is the only public, safe,
/// constructor for a bit selector.
#[inline(always)]
pub fn select<O>(self) -> BitSel<R>
where O: BitOrder {
O::select::<R>(self)
}
/// Computes the bit selector for `self` as an accessor mask.
///
/// This is a type-cast over `Self::select`. It is one of the few public,
/// safe, constructors of a multi-bit mask.
#[inline]
pub fn mask<O>(self) -> BitMask<R>
where O: BitOrder {
self.select::<O>().mask()
}
/// Views the internal index value.
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub fn value(self) -> u8 {
self.idx
}
/// Ranges over all possible index values.
#[inline]
pub(crate) fn range_all() -> impl Iterator<Item = Self>
+ DoubleEndedIterator
+ ExactSizeIterator
+ FusedIterator {
(Self::ZERO.idx ..= Self::LAST.idx).map(|val| make!(idx val))
}
/// Constructs a range over all indices between a start and end point.
///
/// Because implementation details of the `RangeOps` family are not yet
/// stable, and heterogenous ranges are not supported, this must be an
/// opaque iterator rather than a direct `Range<BitIdx<R>>`.
///
/// # Parameters
///
/// - `from`: The inclusive low bound of the range. This will be the first
/// index produced by the iterator.
/// - `upto`: The exclusive high bound of the range. The iterator will halt
/// before yielding an index of this value.
///
/// # Returns
///
/// An opaque iterator that is equivalent to the range `from .. upto`.
///
/// # Requirements
///
/// `from` must be no greater than `upto`.
#[inline]
pub fn range(
from: Self,
upto: BitTail<R>,
) -> impl Iterator<Item = Self>
+ DoubleEndedIterator
+ ExactSizeIterator
+ FusedIterator
{
debug_assert!(
from.value() <= upto.value(),
"Ranges must run from low to high"
);
(from.value() .. upto.value()).map(|val| make!(idx val))
}
/// Computes the the jump distance for a number of bits away from a start.
///
/// This produces the number of elements to move from the starting point,
/// and then the bit index of the destination bit in the destination
/// element.
///
/// # Parameters
///
/// - `self`: A bit index in some memory element, used as the starting
/// position for the offset calculation.
/// - `by`: The number of bits by which to move. Negative values go towards
/// the zero bit index and element address; positive values go towards the
/// maximal bit index and element address.
///
/// # Returns
///
/// - `.0`: The number of elements by which to offset the caller’s element
/// address. This value can be passed directly into [`ptr::offset`].
/// - `.1`: The bit index of the destination bit in the element selected by
/// applying the `.0` pointer offset.
///
/// [`ptr::offset`]: https://doc.rust-lang.org/std/primitive.pointer.html#method.offset
#[inline]
pub(crate) fn offset(self, by: isize) -> (isize, Self) {
let val = self.value();
/* Signed-add `*self` and the jump distance. Overflowing is the unlikely
branch. The result is a bit index, and an overflow marker. `far` is
permitted to be negative; this means that it is lower in memory than the
origin bit. The number line has its origin at the front edge of the
origin element, so `-1` is the *last* bit of the prior memory element.
*/
let (far, ovf) = by.overflowing_add(val as isize);
// If the `isize` addition does not overflow, then the sum can be used
// directly.
if !ovf {
// If `far` is in the origin element, then the jump moves zero
// elements and produces `far` as an absolute index directly.
if (0 .. R::BITS as isize).contains(&far) {
(0, make!(idx far as u8))
}
/* Otherwise, downshift the bit distance to compute the number of
elements moved in either direction, and mask to compute the absolute
bit index in the destination element.
*/
else {
(far >> R::INDX, make!(idx far as u8 & R::MASK))
}
}
else {
/* Overflowing `isize` addition happens to produce ordinary `usize`
addition. In point of fact, `isize` addition and `usize` addition
are the same machine instruction to perform the sum; it is merely
the signed interpretation of the sum that differs. The sum can be
recast back to `usize` without issue.
*/
let far = far as usize;
// This is really only needed in order to prevent sign-extension of
// the downshift; once shifted, the value can be safely re-signed.
((far >> R::INDX) as isize, make!(idx far as u8 & R::MASK))
}
}
/// Computes the span information for a region beginning at `self` for `len`
/// bits.
///
/// The span information is the number of elements in the region that hold
/// live bits, and the position of the tail marker after the live bits.
///
/// This forwards to [`BitTail::span`], as the computation is identical for
/// the two types. Beginning a span at any `Idx` is equivalent to beginning
/// it at the tail of a previous span.
///
/// # Parameters
///
/// - `self`: The start bit of the span.
/// - `len`: The number of bits in the span.
///
/// # Returns
///
/// - `.0`: The number of elements, starting in the element that contains
/// `self`, that contain live bits of the span.
/// - `.1`: The tail counter of the span’s end point.
#[inline]
pub(crate) fn span(self, len: usize) -> (usize, BitTail<R>) {
make!(tail self.value()).span(len)
}
}
#[cfg(not(tarpaulin_include))]
impl<R> Binary for BitIdx<R>
where R: BitRegister
{
#[inline]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(fmt, "{:0>1$b}", self.idx, R::INDX as usize)
}
}
#[cfg(not(tarpaulin_include))]
impl<R> Debug for BitIdx<R>
where R: BitRegister
{
#[inline]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(fmt, "BitIdx<{}>(", type_name::<R>())?;
Display::fmt(&self.idx, fmt)?;
fmt.write_str(")")
}
}
#[cfg(not(tarpaulin_include))]
impl<R> Display for BitIdx<R>
where R: BitRegister
{
#[inline(always)]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
Display::fmt(&self.idx, fmt)
}
}
/// Represents an error encountered in `TryFrom<u8> for BitIdx<R>`.
#[repr(transparent)]
#[cfg(feature = "serde")]
pub struct BitIdxErr<R>
where R: BitRegister
{
/// The value that cannot be wrapped into a `BitIdx`.
err: u8,
/// The register type marker.
_ty: PhantomData<R>,
}
#[cfg(feature = "serde")]
impl<R> TryFrom<u8> for BitIdx<R>
where R: BitRegister
{
type Error = BitIdxErr<R>;
#[inline]
fn try_from(idx: u8) -> Result<Self, Self::Error> {
Self::new(idx).ok_or(BitIdxErr {
err: idx,
_ty: PhantomData,
})
}
}
#[cfg(feature = "serde")]
#[cfg(not(tarpaulin_include))]
impl<R> Debug for BitIdxErr<R>
where R: BitRegister
{
#[inline]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(fmt, "BitIdxErr<{}>(", type_name::<R>())?;
Display::fmt(&self.err, fmt)?;
fmt.write_str(")")
}
}
#[cfg(feature = "serde")]
#[cfg(not(tarpaulin_include))]
impl<R> Display for BitIdxErr<R>
where R: BitRegister
{
#[inline]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(
fmt,
"The value {} is too large to index into {}",
self.err,
core::any::type_name::<R>()
)
}
}
#[cfg(all(feature = "serde", feature = "std"))]
#[cfg(not(tarpaulin_include))]
impl<R> std::error::Error for BitIdxErr<R> where R: BitRegister
{
}
/** Semantic index of a dead bit *after* a live region.
Like `BitIdx<R>`, this type indicates a semantic counter within a register `R`.
However, it marks the position of a *dead* bit *after* a live range. This means
that it is permitted to have the value of `R::BITS`, to indicate that a live
region touches the semantic back edge of the register `R`.
Instances of this type will only contain the value `0` when the span that
created them is empty. Otherwise, they will have the range `1 ..= R::BITS`.
This type cannot be used for indexing into a register `R`, and does not
translate to a `BitPos<R>`. It has no behavior other than viewing its internal
counter for region arithmetic.
# Type Parameters
- `R`: The register type that these values govern.
# Validity
Values of this type are required to be in the range `0 ..= R::BITS`. Any value
outside this range will cause the program state to become invalid, and the
library’s behavior is unspecified. The library will never produce such an
invalid value.
# Construction
This type cannot be directly constructed outside the `bitvec` crate. `bitvec`
will construct safe values of this type, and allows users to view them and use
them for region computation. All values of this type constructed by `bitvec` are
known to be correct based on user input to the crate.
**/
// #[rustc_layout_scalar_valid_range_end(R::BITS + 1)]
#[repr(transparent)]
#[derive(Clone, Copy, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct BitTail<R>
where R: BitRegister
{
/// Semantic tail counter of a register, constrained to `0 ..= R::BITS`.
end: u8,
/// Marker for the tailed type.
_ty: PhantomData<R>,
}
impl<R> BitTail<R>
where R: BitRegister
{
/// The inclusive-maximum tail counter.
pub(crate) const END: Self = make!(tail R::BITS);
/// The zero tail.
pub(crate) const ZERO: Self = make!(tail 0);
/// Wraps a counter value as an assumed-good tail of an `R` register.
///
/// # Parameters
///
/// - `end`: A semantic index of a dead bit in or after an `R` register.
///
/// # Returns
///
/// `end` wrapped in a `BitTail`.
///
/// # Safety
///
/// `end` **must** be within the valid range `0 ..= R::BITS`. In debug
/// builds, invalid `end` values cause a panic; release builds do not check
/// the input.
#[inline]
pub(crate) unsafe fn new_unchecked(end: u8) -> Self {
debug_assert!(
end <= R::BITS,
"Bit tail {} cannot exceed type width {}",
end,
R::BITS
);
make!(tail end)
}
/// Views the internal tail value.
#[inline]
#[cfg(not(tarpaulin_include))]
pub fn value(self) -> u8 {
self.end
}
/// Ranges over all valid tails for a starting index.
#[inline]
#[cfg(test)]
pub(crate) fn range_from(
start: BitIdx<R>,
) -> impl Iterator<Item = Self>
+ DoubleEndedIterator
+ ExactSizeIterator
+ FusedIterator {
(start.idx ..= Self::END.end).map(|val| make!(tail val))
}
/// Computes span information for a region beginning immediately after a
/// preceding region.
///
/// The computed region of `len` bits has its start at the *live* bit that
/// corresponds to the `self` dead tail. The return value is the number of
/// memory elements containing live bits of the computed span and its tail
/// marker.
///
/// # Parameters
///
/// - `self`
/// - `len`: The number of live bits in the span starting after `self`.
///
/// # Returns
///
/// - `.0`: The number of elements `R` that contain live bits in the
/// computed region.
/// - `.1`: The tail counter of the first dead bit after the new span.
///
/// # Behavior
///
/// If `len` is `0`, this returns `(0, self)`, as the span has no live bits.
/// If `self` is `BitTail::END`, then the new region starts at
/// `BitIdx::ZERO` in the next element.
pub(crate) fn span(self, len: usize) -> (usize, Self) {
if len == 0 {
return (0, self);
}
let val = self.end;
let head = val & R::MASK;
let bits_in_head = (R::BITS - head) as usize;
if len <= bits_in_head {
return (1, make!(tail head + len as u8));
}
let bits_after_head = len - bits_in_head;
let elts = bits_after_head >> R::INDX;
let tail = bits_after_head as u8 & R::MASK;
let is_zero = (tail == 0) as u8;
let edges = 2 - is_zero as usize;
(elts + edges, make!(tail(is_zero << R::INDX) | tail))
}
}
#[cfg(not(tarpaulin_include))]
impl<R> Debug for BitTail<R>
where R: BitRegister
{
#[inline]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(fmt, "BitTail<{}>(", type_name::<R>())?;
Display::fmt(&self.end, fmt)?;
fmt.write_str(")")
}
}
#[cfg(not(tarpaulin_include))]
impl<R> Display for BitTail<R>
where R: BitRegister
{
#[inline(always)]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
Display::fmt(&self.end, fmt)
}
}
/** An electrical position of a single bit within a register `R`.
This type is used as the shift distance in the expression `1 << shamt`. It is
only produced by the translation of a semantic `BitIdx<R>` according to some
[`BitOrder`] implementation using `BitOrder::at`. It can only be used for the
construction of bit masks used to manipulate a register value during memory
access, and serves no other purpose.
# Type Parameters
- `R`: The register type that these values govern.
# Validity
Values of this type are required to be in the range `0 .. R::BITS`. Any value
outside this range will cause the program state to become invalid, and the
library’s behavior is unspecified. The library will never produce such an
invalid value, and users are required to do the same.
# Construction
This type offers public unsafe constructors. `bitvec` does not offer any public
APIs that take values of this type directly; it always routes through `BitOrder`
implementations. As `BitIdx` will only be constructed from safe, correct,
values, and `BitOrder::at` is the only `BitIdx -> BitPos` transform function,
all constructed `BitPos` values are known to be memory-correct.
**/
// #[rustc_layout_scalar_valid_range_end(R::BITS)]
#[repr(transparent)]
#[derive(Clone, Copy, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct BitPos<R>
where R: BitRegister
{
/// Electrical position within a register, constrained to `0 .. R::BITS`.
pos: u8,
/// Marker for the positioned type.
_ty: PhantomData<R>,
}
impl<R> BitPos<R>
where R: BitRegister
{
/// Wraps a value as a known-good position within an `R` register.
///
/// # Parameters
///
/// - `pos`: An electrical position of a bit within an `R` register.
///
/// # Returns
///
/// If `pos` is outside the valid range `0 .. R::BITS`, this returns `None`;
/// otherwise, it returns a `BitPos` wrapping the `pos` value.
///
/// # Safety
///
/// This function must only be called within a `BitOrder::at` implementation
/// which is verified to be correct.
#[inline]
pub unsafe fn new(pos: u8) -> Option<Self> {
// Reject a position value that is not within the range `0 .. R::BITS`.
if pos >= R::BITS {
return None;
}
Some(make!(pos pos))
}
/// Wraps a value as an assumed-good position within an `R` register.
///
/// # Parameters
///
/// - `pos`: An electrical position within an `R` register.
///
/// # Returns
///
/// `pos` wrapped in a `BitPos`.
///
/// # Safety
///
/// `pos` **must** be within the valid range `0 .. R::BITS`. In debug
/// builds, invalid `pos` values cause a panic; release builds do not check
/// the input.
///
/// This function must only be called in a correct `BitOrder::at`
/// implementation.
#[inline]
pub unsafe fn new_unchecked(pos: u8) -> Self {
debug_assert!(
pos < R::BITS,
"Bit position {} cannot exceed type width {}",
pos,
R::BITS
);
make!(pos pos)
}
/// Constructs a one-hot selection mask from the position counter.
///
/// This is a well-typed `1 << pos`.
///
/// # Parameters
///
/// - `self`
///
/// # Returns
///
/// A one-hot mask for `R` selecting the bit specified by `self`.
#[inline]
pub fn select(self) -> BitSel<R> {
make!(sel R::ONE << self.pos)
}
/// Constructs an untyped bitmask from the position counter.
///
/// This removes the one-hot requirement from the selection mask.
///
/// # Parameters
///
/// - `self`
///
/// # Returns
///
/// A mask for `R` selecting only the bit specified by `self`.
#[inline]
pub fn mask(self) -> BitMask<R> {
make!(mask self.select().sel)
}
/// Views the internal position value.
#[inline]
pub fn value(self) -> u8 {
self.pos
}
}
#[cfg(not(tarpaulin_include))]
impl<R> Debug for BitPos<R>
where R: BitRegister
{
#[inline]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(fmt, "BitPos<{}>(", type_name::<R>())?;
Display::fmt(&self.pos, fmt)?;
fmt.write_str(")")
}
}
#[cfg(not(tarpaulin_include))]
impl<R> Display for BitPos<R>
where R: BitRegister
{
#[inline(always)]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
Display::fmt(&self.pos, fmt)
}
}
/** A one-hot selection mask, to be applied to a register `R`.
This type selects exactly one bit, and is produced by the conversion of a
semantic [`BitIdx`] to a [`BitPos`] through a [`BitOrder`] implementation, and
then applying `1 << pos`. Values of this type are used to select only the bit
specified by a `BitIdx` when performing memory operations.
# Type Parameters
- `R`: The register type that these values govern.
# Validity
Values of this type are required to have exactly one bit set to `1` and all
other bits set to `0`.
# Construction
This type is only constructed from `BitPos` values, which are themselves only
constructed by a chain of known-good `BitIdx` values passed into known-correct
`BitOrder` implementations. As such, `bitvec` can use `BitSel` values with full
confidence that they are correct in the surrounding context.
**/
#[repr(transparent)]
#[derive(Clone, Copy, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct BitSel<R>
where R: BitRegister
{
/// The one-hot selector mask.
sel: R,
}
impl<R> BitSel<R>
where R: BitRegister
{
/// Wraps a selector value as a known-good selection of an `R` register.
///
/// # Parameters
///
/// - `sel`: A one-hot selection mask of a bit in an `R` register.
///
/// # Returns
///
/// If `sel` does not have exactly one bit set, this returns `None`;
/// otherwise, it returns a `BitSel` wrapping the `sel` value.
///
/// # Safety
///
/// This function must only be called within a `BitOrder::select`
/// implementation that is verified to be correct.
#[inline]
pub unsafe fn new(sel: R) -> Option<Self> {
if sel.count_ones() != 1 {
return None;
}
Some(make!(sel sel))
}
/// Wraps a selector value as an assumed-good selection of an `R` register.
///
/// # Parameters
///
/// - `sel`: A one-hot selection mask of a bit in an `R` register.
///
/// # Returns
///
/// `sel` wrapped in a `BitSel`.
///
/// # Safety
///
/// `sel` **must** have exactly one bit set high and all others low. In
/// debug builds, invalid `sel` values cause a panic; release builds do not
/// check the input.
///
/// This function must only be called in a correct `BitOrder::select`
/// implementation.
#[inline]
pub unsafe fn new_unchecked(sel: R) -> Self {
debug_assert!(
sel.count_ones() == 1,
"Selections are required to have exactly one set bit: {:0>1$b}",
sel,
R::BITS as usize
);
make!(sel sel)
}
/// Converts the selector into a bit mask.
///
/// This is a type-cast.
#[inline]
pub fn mask(self) -> BitMask<R>
where R: BitRegister {
make!(mask self.sel)
}
/// Views the internal selector value.
#[inline]
pub fn value(self) -> R {
self.sel
}
/// Ranges over all possible selector values.
pub fn range_all() -> impl Iterator<Item = Self>
+ DoubleEndedIterator
+ ExactSizeIterator
+ FusedIterator {
BitIdx::<R>::range_all().map(|i| make!(pos i.idx).select())
}
}
#[cfg(not(tarpaulin_include))]
impl<R> Binary for BitSel<R>
where R: BitRegister
{
#[inline]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(fmt, "{:0>1$b}", self.sel, R::BITS as usize)
}
}
#[cfg(not(tarpaulin_include))]
impl<R> Debug for BitSel<R>
where R: BitRegister
{
#[inline]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(fmt, "BitSel<{}>(", type_name::<R>())?;
Binary::fmt(&self, fmt)?;
fmt.write_str(")")
}
}
#[cfg(not(tarpaulin_include))]
impl<R> Display for BitSel<R>
where R: BitRegister
{
#[inline(always)]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
Display::fmt(&self.sel, fmt)
}
}
/** A multi-bit selection mask.
Unlike [`BitSel`], which enforces a strict one-hot mask encoding, this mask type
permits any number of bits to be set or unset. This is used to accumulate
selections for a batch operation on a register.
# Construction
It is only constructed by accumulating `BitSel` values. The chain of custody for
safe construction in this module and in `order` ensures that all masks that are
applied to register values can be trusted to not cause memory unsafety.
**/
#[repr(transparent)]
#[derive(Clone, Copy, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct BitMask<R>
where R: BitRegister
{
/// A mask of any number of bits to select.
mask: R,
}
impl<R> BitMask<R>
where R: BitRegister
{
/// A full mask.
pub const ALL: Self = make!(mask R::ALL);
/// An empty mask.
pub const ZERO: Self = make!(mask R::ZERO);
/// Wraps any `R` value as a bit-mask.
///
/// This constructor is provided to explicitly declare that an operation is
/// discarding the numeric value of an integer and reading it only as a
/// bit-mask.
///
/// # Parameters
///
/// - `mask`: Some integer value
///
/// # Returns
///
/// `mask` wrapped as a bit-mask, with its numeric context discarded.
///
/// # Safety
///
/// This function must only be called within a `BitOrder::mask`
/// implementation which is verified to be correct.
///
/// Prefer accumulating `BitSel` values using the `Sum` implementation.
#[inline]
pub unsafe fn new(mask: R) -> Self {
make!(mask mask)
}
/// Creates a new mask with a selector bit activated.
///
/// # Parameters
///
/// - `self`
/// - `sel`: The selector bit to activate in the new mask.
///
/// # Returns
///
/// A copy of `self`, with the selector at `sel` activated.
#[inline]
pub fn combine(mut self, sel: BitSel<R>) -> Self {
self.insert(sel);
self
}
/// Inserts a selector into an existing mask.
///
/// # Parameters
///
/// - `&mut self`
/// - `sel`: The selector bit to insert into the mask.
///
/// # Effects
///
/// The selector’s bit in the `self` mask is activated.
#[inline]
pub fn insert(&mut self, sel: BitSel<R>) {
self.mask |= sel.sel;
}
/// Tests whether a mask contains a given selector bit.
///
/// # Paramters
///
/// - `self`
/// - `sel`: The selector bit to test in the `self` mask.
///
/// # Returns
///
/// Whether `self` has set the bit at `sel`.
#[inline]
pub fn test(self, sel: BitSel<R>) -> bool {
self.mask & sel.sel != R::ZERO
}
/// Views the internal mask value.
#[inline]
pub fn value(self) -> R {
self.mask
}
}
#[cfg(not(tarpaulin_include))]
impl<R> Binary for BitMask<R>
where R: BitRegister
{
#[inline]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(fmt, "{:0>1$b}", self.mask, R::BITS as usize)
}
}
#[cfg(not(tarpaulin_include))]
impl<R> Debug for BitMask<R>
where R: BitRegister
{
#[inline]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(fmt, "BitMask<{}>(", type_name::<R>())?;
Binary::fmt(&self, fmt)?;
fmt.write_str(")")
}
}
#[cfg(not(tarpaulin_include))]
impl<R> Display for BitMask<R>
where R: BitRegister
{
#[inline(always)]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
Display::fmt(&self.mask, fmt)
}
}
impl<R> Sum<BitSel<R>> for BitMask<R>
where R: BitRegister
{
fn sum<I>(iter: I) -> Self
where I: Iterator<Item = BitSel<R>> {
iter.fold(Self::ZERO, Self::combine)
}
}
impl<R> BitAnd<R> for BitMask<R>
where R: BitRegister
{
type Output = Self;
fn bitand(self, rhs: R) -> Self {
make!(mask self.mask & rhs)
}
}
impl<R> BitOr<R> for BitMask<R>
where R: BitRegister
{
type Output = Self;
fn bitor(self, rhs: R) -> Self {
make!(mask self.mask | rhs)
}
}
impl<R> Not for BitMask<R>
where R: BitRegister
{
type Output = Self;
fn not(self) -> Self::Output {
make!(mask !self.mask)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::order::{
Lsb0,
Msb0,
};
#[test]
fn index_fns() {
assert!(BitIdx::<u8>::new(8).is_none());
for n in 0 .. 8 {
assert_eq!(
BitIdx::<u8>::new(n).unwrap().position::<Lsb0>().value(),
n
);
}
for n in 0 .. 8 {
assert_eq!(
BitIdx::<u8>::new(n).unwrap().position::<Msb0>().value(),
7 - n
);
}
for n in 0 .. 8 {
assert_eq!(
BitIdx::<u8>::new(n).unwrap().mask::<Lsb0>().value(),
1 << n
);
}
for n in 0 .. 8 {
assert_eq!(
BitIdx::<u8>::new(n).unwrap().mask::<Msb0>().value(),
128 >> n
);
}
for n in 0 .. 8 {
assert_eq!(BitIdx::<u8>::new(n).unwrap().value(), n);
}
}
#[test]
fn tail_fns() {
for n in 0 .. 8 {
let tail: BitTail<u8> = make!(tail n);
assert_eq!(tail.value(), n);
}
}
#[test]
fn position_fns() {
assert!(unsafe { BitPos::<u8>::new(8) }.is_none());
for n in 0 .. 8 {
let pos: BitPos<u8> = make!(pos n);
let mask: BitMask<u8> = make!(mask 1 << n);
assert_eq!(pos.mask(), mask);
}
}
#[test]
fn select_fns() {
assert!(unsafe { BitSel::<u8>::new(1) }.is_some());
assert!(unsafe { BitSel::<u8>::new(3) }.is_none());
for (n, sel) in BitSel::<u8>::range_all().enumerate() {
assert_eq!(sel, make!(sel(1 << n) as u8));
}
}
#[test]
fn fold_masks() {
assert_eq!(
BitSel::<u8>::range_all()
.map(BitSel::mask)
.fold(BitMask::<u8>::ZERO, |accum, mask| accum | mask.value()),
BitMask::<u8>::ALL
);
assert_eq!(!BitMask::<u8>::ALL, BitMask::ZERO);
}
#[test]
fn offset() {
let (elts, idx) =
BitIdx::<u32>::new(31).unwrap().offset(isize::max_value());
assert_eq!(elts, (isize::max_value() >> 5) + 1);
assert_eq!(idx, BitIdx::new(30).unwrap());
}
#[test]
fn span() {
let start: BitTail<u8> = make!(tail 4);
assert_eq!(start.span(0), (0, start));
assert_eq!(start.span(4), (1, make!(tail 8)));
assert_eq!(start.span(8), (2, start));
}
#[test]
fn walk() {
let end: BitIdx<u8> = make!(idx 7);
assert_eq!(end.incr(), (make!(idx 0), true));
assert_eq!(end.decr(), (make!(idx 6), false));
}
}