1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
use crate::internal::*;
use ndarray::*;
#[derive(Debug, Clone, new, Default, Hash)]
pub struct Tile {
pub multipliers: TVec<usize>,
}
impl_dyn_hash!(Tile);
impl Tile {
fn eval_t<T: Datum>(&self, data: &Arc<Tensor>) -> TractResult<Arc<Tensor>> {
let view = unsafe { data.to_array_view_unchecked::<T>() };
let output_shape: TVec<usize> = view
.shape()
.iter()
.zip(self.multipliers.iter())
.map(|(&d, &m)| d * m as usize)
.collect();
let output = ndarray::ArrayD::from_shape_fn(&*output_shape, |coords| {
let coords: TVec<usize> =
coords.slice().iter().zip(data.shape().iter()).map(|(&x, &d)| x % d).collect();
view[&*coords].clone()
});
let mut output = output.into_tensor();
unsafe {
output.set_datum_type(data.datum_type());
}
Ok(output.into_arc_tensor())
}
}
impl Op for Tile {
fn name(&self) -> Cow<str> {
"Tile".into()
}
op_core_mir!();
op_as_typed_op!();
}
impl EvalOp for Tile {
fn is_stateless(&self) -> bool {
true
}
fn eval(&self, inputs: TVec<Arc<Tensor>>) -> TractResult<TVec<Arc<Tensor>>> {
let result =
dispatch_datum_by_size!(Self::eval_t(inputs[0].datum_type())(self, &inputs[0]))?;
Ok(tvec!(result))
}
}
impl TypedOp for Tile {
as_op!();
fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
let shape = inputs[0]
.shape
.iter()
.zip(self.multipliers.iter())
.map(|(a, &b)| a.clone() * b)
.collect::<TVec<_>>();
Ok(tvec!(TypedFact::dt_shape(inputs[0].datum_type, shape)))
}
}