1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
use crate::internal::*;

#[derive(Debug, Clone, PartialEq, Hash)]
pub enum PaddingSpec {
    Explicit(TVec<usize>, TVec<usize>, bool),
    Valid,
    SameUpper,
    SameLower,
}

impl Default for PaddingSpec {
    fn default() -> PaddingSpec {
        PaddingSpec::Valid
    }
}

#[derive(Debug, Clone, new, PartialEq)]
pub struct ComputedPaddedDim<D: DimLike> {
    pub deconvoluted: D,
    pub convoluted: D,
    pub pad_before: D,
    pub pad_after: D,
}

impl PaddingSpec {
    pub fn valid_dim(&self, d: usize) -> bool {
        match self {
            PaddingSpec::Valid => true,
            PaddingSpec::Explicit(a, b, ceil_mode) => *ceil_mode && a[d] == 0 && b[d] == 0,
            _ => false,
        }
    }

    pub fn rm_axis(&self, d: usize) -> PaddingSpec {
        match self {
            PaddingSpec::Explicit(a, b, ceil_mode) => {
                let mut a = a.clone();
                let mut b = b.clone();
                a.remove(d);
                b.remove(d);
                PaddingSpec::Explicit(a, b, *ceil_mode)
            }
            _ => self.clone(),
        }
    }

    pub fn compute<D: DimLike>(
        &self,
        input_spatial_shape: &[D],
        kernel_spatial_shape: &[usize],
        dilations: &[usize],
        strides: &[usize],
    ) -> TVec<ComputedPaddedDim<D>> {
        (0..input_spatial_shape.len())
            .map(|d| {
                self.compute_one(
                    d,
                    &input_spatial_shape[d],
                    kernel_spatial_shape[d],
                    dilations[d],
                    strides[d],
                )
            })
            .collect()
    }

    pub fn compute_for_deconv<D: DimLike>(
        &self,
        conv_spatial_shape: &[D],
        kernel_spatial_shape: &[usize],
        dilations: &[usize],
        strides: &[usize],
        adjustments: &[usize],
    ) -> TVec<ComputedPaddedDim<D>> {
        (0..conv_spatial_shape.len())
            .map(|d| {
                self.compute_one_for_deconv(
                    d,
                    &conv_spatial_shape[d],
                    kernel_spatial_shape[d],
                    dilations[d],
                    strides[d],
                    adjustments[d],
                )
            })
            .collect()
    }

    pub fn compute_one<D: DimLike>(
        &self,
        axis: usize,
        input: &D,
        kernel: usize,
        dilation: usize,
        stride: usize,
    ) -> ComputedPaddedDim<D> {
        match self {
            PaddingSpec::Valid => Self::valid(input, kernel, dilation, stride),
            PaddingSpec::Explicit(ref bef, ref aft, ceil_mode) => {
                Self::explicit(input, kernel, dilation, stride, bef[axis], aft[axis], *ceil_mode)
            }
            PaddingSpec::SameUpper => Self::same(input, kernel, dilation, stride, true),
            PaddingSpec::SameLower => Self::same(input, kernel, dilation, stride, false),
        }
    }

    pub fn compute_one_for_deconv<D: DimLike>(
        &self,
        axis: usize,
        input: &D,
        kernel: usize,
        dilation: usize,
        stride: usize,
        adjustment: usize,
    ) -> ComputedPaddedDim<D> {
        match self {
            PaddingSpec::Valid => {
                Self::valid_for_deconv(input, kernel, dilation, stride, adjustment)
            }
            PaddingSpec::SameUpper => {
                Self::same_for_deconv(input, kernel, dilation, stride, adjustment, true)
            }
            PaddingSpec::SameLower => {
                Self::same_for_deconv(input, kernel, dilation, stride, adjustment, false)
            }
            PaddingSpec::Explicit(ref bef, ref aft, _ceil_mode) => Self::explicit_for_deconv(
                input, kernel, dilation, stride, bef[axis], aft[axis], adjustment,
            ),
        }
    }

    fn valid<D: DimLike>(
        input: &D,
        kernel: usize,
        dilation: usize,
        stride: usize,
    ) -> ComputedPaddedDim<D> {
        let kernel_field = (kernel - 1) * dilation + 1;
        let output = if let Ok(int) = input.to_usize() {
            D::from((int + 1).saturating_sub(kernel_field).div_ceil(stride))
        } else {
            (input.clone() + 1 - kernel_field).div_ceil(stride)
        };
        ComputedPaddedDim::new(input.clone(), output, 0.into(), 0.into())
    }

    fn valid_for_deconv<D: DimLike>(
        convoluted: &D,
        kernel: usize,
        dilation: usize,
        stride: usize,
        adjustment: usize,
    ) -> ComputedPaddedDim<D> {
        let kernel_field = (kernel - 1) * dilation + 1;
        let deconvoluted = (convoluted.clone() - 1) * stride + kernel_field + adjustment;
        ComputedPaddedDim::new(deconvoluted, convoluted.clone(), 0.into(), 0.into())
    }

    fn explicit<D: DimLike>(
        input: &D,
        kernel: usize,
        dilation: usize,
        stride: usize,
        bef: usize,
        aft: usize,
        ceil_mode: bool,
    ) -> ComputedPaddedDim<D> {
        let kernel_field = (kernel - 1) * dilation + 1;
        let dividend = if let Ok(int) = input.to_usize() {
            D::from((int + bef + aft).saturating_sub(kernel_field))
        } else {
            input.clone() + bef + aft - kernel_field
        };
        let output = if ceil_mode { dividend.div_ceil(stride) } else { dividend.div(stride) } + 1;
        ComputedPaddedDim::new(input.clone(), output, bef.into(), aft.into())
    }

    fn explicit_for_deconv<D: DimLike>(
        convoluted: &D,
        kernel: usize,
        dilation: usize,
        stride: usize,
        bef: usize,
        aft: usize,
        adjustment: usize,
    ) -> ComputedPaddedDim<D> {
        let kernel_field = (kernel - 1) * dilation + 1;
        let deconvoluted =
            (convoluted.clone() - 1) * stride + kernel_field - bef - aft + adjustment;
        ComputedPaddedDim::new(deconvoluted.clone(), convoluted.clone(), bef.into(), aft.into())
    }

    fn same<D: DimLike>(
        input: &D,
        kernel: usize,
        dilation: usize,
        stride: usize,
        upper: bool,
    ) -> ComputedPaddedDim<D> {
        let output = input.div_ceil(stride);
        let kernel_field = (kernel - 1) * dilation + 1;
        let pad = if let Ok(input) = input.to_usize() {
            let pad = (((output.clone() - 1) * stride + kernel_field).to_usize().unwrap())
                .saturating_sub(input);
            pad.into()
        } else {
            (output.clone() - 1) * stride + kernel_field - input
        };
        let lower_pad = pad.clone() / 2;
        let higher_pad = pad - &lower_pad;
        let (before, after) = if upper { (lower_pad, higher_pad) } else { (higher_pad, lower_pad) };
        ComputedPaddedDim::new(input.clone(), output, before, after) // TODO input is wrong for stride != 1
    }

    fn same_for_deconv<D: DimLike>(
        convoluted: &D,
        kernel: usize,
        dilation: usize,
        stride: usize,
        adjustment: usize,
        upper: bool,
    ) -> ComputedPaddedDim<D> {
        let kernel_field = (kernel - 1) * dilation + 1;
        let crop = kernel_field - stride + adjustment;
        let lower_crop = crop.clone() / 2;
        let higher_crop = crop - &lower_crop;
        let (before, after) =
            if upper { (lower_crop, higher_crop) } else { (higher_crop, lower_crop) };
        let deconvoluted = (convoluted.clone() - 1) * stride + kernel_field - before - after;
        ComputedPaddedDim::new(
            deconvoluted.clone(),
            convoluted.clone(),
            before.into(),
            after.into(),
        )
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use PaddingSpec as PS;

    #[test]
    fn same_stride_1() {
        assert_eq!(PS::same(&1usize, 2usize, 1, 1, true), ComputedPaddedDim::new(1, 1, 0, 1));
        assert_eq!(PS::same(&2usize, 2usize, 1, 1, true), ComputedPaddedDim::new(2, 2, 0, 1));
        assert_eq!(PS::same(&3usize, 2usize, 1, 1, true), ComputedPaddedDim::new(3, 3, 0, 1));
        assert_eq!(PS::same(&4usize, 2usize, 1, 1, true), ComputedPaddedDim::new(4, 4, 0, 1));
    }

    #[test]
    fn same_stride_2() {
        assert_eq!(PS::same(&1usize, 2usize, 1, 2, true), ComputedPaddedDim::new(1, 1, 0, 1));
        assert_eq!(PS::same(&2usize, 2usize, 1, 2, true), ComputedPaddedDim::new(2, 1, 0, 0));
        assert_eq!(PS::same(&3usize, 2usize, 1, 2, true), ComputedPaddedDim::new(3, 2, 0, 1));
        assert_eq!(PS::same(&4usize, 2usize, 1, 2, true), ComputedPaddedDim::new(4, 2, 0, 0));
    }

    #[test]
    fn same_1() {
        assert_eq!(PS::same(&6usize, 1usize, 1, 2, true), ComputedPaddedDim::new(6, 3, 0, 0));
    }

    #[test]
    fn same_lower() {
        assert_eq!(PS::same(&10usize, 2usize, 1, 3, false), ComputedPaddedDim::new(10, 4, 1, 0));
    }

    #[test]
    fn same_ker_3() {
        assert_eq!(PS::same(&1usize, 3usize, 1, 1, true), ComputedPaddedDim::new(1, 1, 1, 1));
        assert_eq!(PS::same(&2usize, 3usize, 1, 1, true), ComputedPaddedDim::new(2, 2, 1, 1));
        assert_eq!(PS::same(&3usize, 3usize, 1, 1, true), ComputedPaddedDim::new(3, 3, 1, 1));
        assert_eq!(PS::same(&4usize, 3usize, 1, 1, true), ComputedPaddedDim::new(4, 4, 1, 1));
    }

    #[test]
    fn valid_1() {
        assert_eq!(PS::valid(&10usize, 2usize, 1, 3), ComputedPaddedDim::new(10, 3, 0, 0));
    }

    #[test]
    fn explicit_2() {
        assert_eq!(
            PS::explicit(&28usize, 3usize, 1, 1, 2, 2, true),
            ComputedPaddedDim::new(28, 30, 2, 2)
        );
    }

    #[test]
    fn same_upper() {
        assert_eq!(PS::same(&7usize, 1usize, 1, 2, true), ComputedPaddedDim::new(7, 4, 0, 0));
    }
}