1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
use crate::infer::*;
use crate::internal::*;
use tract_itertools::Itertools;
#[derive(Debug, Clone, new, Hash)]
pub struct AddDims {
pub axes: Vec<isize>,
}
impl_dyn_hash!(AddDims);
impl AddDims {
pub fn output_shape<D: DimLike>(&self, input: &[D]) -> TVec<D> {
let rank = input.len() as isize;
let mut shape: TVec<D> = input.iter().cloned().collect();
let axes = self
.axes
.iter()
.map(|&axis| if axis < 0 { axis + rank } else { axis } as usize)
.sorted();
for axis in axes {
shape.insert(axis, D::one())
}
shape
}
}
impl Expansion for AddDims {
fn name(&self) -> Cow<str> {
"AddDims".into()
}
fn info(&self) -> TractResult<Vec<String>> {
Ok(vec![format!("Axes: {:?}", self.axes)])
}
op_hir!();
fn rules<'r, 'p: 'r, 's: 'r>(
&'s self,
s: &mut Solver<'r>,
inputs: &'p [TensorProxy],
outputs: &'p [TensorProxy],
) -> InferenceResult {
check_output_arity(&outputs, 1)?;
s.equals(&outputs[0].datum_type, &inputs[0].datum_type)?;
s.equals(&outputs[0].rank, (&inputs[0].rank).bex() + self.axes.len() as i64)?;
s.given(&inputs[0].shape, move |s, shape| {
let output_shape = self.output_shape(&shape);
s.equals(&outputs[0].shape, output_shape)
})
}
fn wire(
&self,
prefix: &str,
model: &mut TypedModel,
inputs: &[OutletId],
) -> TractResult<TVec<OutletId>> {
let rank = model.outlet_fact(inputs[0])?.rank() as isize;
let mut wire: TVec<OutletId> = inputs.into();
let axes = self
.axes
.iter()
.map(|&axis| if axis < 0 { axis + rank } else { axis } as usize)
.sorted();
for axis in axes {
wire =
model.wire_node(format!("{}.axis-{}", prefix, axis), AxisOp::Add(axis), &wire)?;
}
Ok(wire)
}
}