1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
use crate::infer::*;
use crate::internal::*;
use tract_core::ops::cnn::conv::ConvUnary;
use tract_core::ops::cnn::conv::KernelFormat;
use tract_core::ops::cnn::{PaddingSpec, PoolSpec};
use tract_core::ops::matmul::mir_quant::QParamKind;
use tract_core::ops::nn::DataFormat;
#[derive(Debug, Clone, Default, Hash)]
pub struct Conv {
pub data_format: DataFormat,
pub kernel_fmt: KernelFormat,
pub dilations: Option<TVec<usize>>,
pub kernel_shape: Option<TVec<usize>>,
pub padding: PaddingSpec,
pub strides: Option<TVec<usize>>,
pub group: Option<usize>,
pub x_scale_input: Option<usize>,
pub x_zero_point_input: Option<usize>,
pub k_input: Option<usize>,
pub k_scale_input: Option<usize>,
pub k_zero_point_input: Option<usize>,
pub y_scale_input: Option<usize>,
pub y_zero_point_input: Option<usize>,
pub bias_input: Option<usize>,
pub override_output_datum_type: Option<DatumType>,
}
impl_dyn_hash!(Conv);
impl Conv {
pub fn hwc(self) -> Conv {
Conv { data_format: DataFormat::HWC, ..self }
}
pub fn nhwc(self) -> Conv {
Conv { data_format: DataFormat::NHWC, ..self }
}
pub fn hwio(self) -> Conv {
Conv { kernel_fmt: KernelFormat::HWIO, ..self }
}
pub fn padding(self, padding: PaddingSpec) -> Conv {
Conv { padding, ..self }
}
pub fn dilations(self, dilations: TVec<usize>) -> Conv {
Conv { dilations: Some(dilations), ..self }
}
pub fn group(self, group: usize) -> Conv {
Conv { group: Some(group), ..self }
}
pub fn strides(self, strides: TVec<usize>) -> Conv {
Conv { strides: Some(strides), ..self }
}
pub fn kernel_shape(self, kernel_shape: TVec<usize>) -> Conv {
Conv { kernel_shape: Some(kernel_shape), ..self }
}
pub fn bias_input(self, input: usize) -> Conv {
Conv { bias_input: Some(input), ..self }
}
pub fn x_zero_point_input(self, input: usize) -> Conv {
Conv { x_zero_point_input: Some(input), ..self }
}
pub fn k_zero_point_input(self, input: usize) -> Conv {
Conv { k_zero_point_input: Some(input), ..self }
}
pub fn output_shape<D: DimLike>(&self, ishape: &[D], kshape: &[usize]) -> TractResult<TVec<D>> {
debug_assert_eq!(
ishape.len()
+ (self.data_format == DataFormat::HWC || self.data_format == DataFormat::CHW)
as usize,
kshape.len(),
"Input and kernel ranks are inconsistent"
);
let mut result: TVec<D> = ishape.into();
let ishape = self.data_format.shape(ishape)?;
let spatial_rank = ishape.hw_rank();
let ones = tvec![1; spatial_rank];
let kernel_spatial_shape = &kshape[self.kernel_fmt.h_axis()..][..spatial_rank];
let computed = self.padding.compute(
ishape.hw_dims(),
kernel_spatial_shape,
self.dilations.as_ref().unwrap_or(&ones),
self.strides.as_ref().unwrap_or(&ones),
);
let channels_out = match self.kernel_fmt {
KernelFormat::OIHW => kshape[0],
KernelFormat::HWIO => kshape[kshape.len() - 1] * self.group.unwrap_or(1),
};
result[ishape.c_axis()] = channels_out.into();
for (ix, d) in computed.iter().enumerate() {
result[ishape.h_axis() + ix] = d.convoluted.clone();
}
Ok(result)
}
}
impl Expansion for Conv {
fn name(&self) -> Cow<str> {
"ConvHir".into()
}
fn validation(&self) -> Validation {
Validation::Rounding
}
op_hir!();
fn rules<'r, 'p: 'r, 's: 'r>(
&'s self,
s: &mut Solver<'r>,
inputs: &'p [TensorProxy],
outputs: &'p [TensorProxy],
) -> InferenceResult {
if inputs.len() < 2 {
bail!("Wrong number of inputs. Expected 2 or more, got {}", inputs.len());
}
let has_n = self.data_format == DataFormat::NHWC || self.data_format == DataFormat::NCHW;
let k_input = &inputs[self.k_input.unwrap_or(1)];
if let Some(kshape) = &self.kernel_shape {
s.equals(&k_input.rank, kshape.len() as i64 + 2)?;
for (ix, dim) in kshape.iter().enumerate() {
s.equals(&k_input.shape[ix + self.kernel_fmt.h_axis()], TDim::from(*dim as i64))?;
}
}
s.equals(&inputs[0].rank, k_input.rank.bex() + (has_n as usize as i64 - 1))?;
s.equals(&outputs[0].rank, &inputs[0].rank)?;
check_output_arity(&outputs, 1)?;
s.equals(&inputs[0].datum_type, &k_input.datum_type)?;
if let Some(dt) = self.override_output_datum_type {
s.equals(&outputs[0].datum_type, dt)?;
} else {
s.equals(&outputs[0].datum_type, &inputs[0].datum_type)?;
}
if let Some(bias) = self.bias_input {
s.equals(&inputs[bias].rank, 1)?;
s.given(&k_input.rank, move |s, krank| {
let filter_o = match self.kernel_fmt {
KernelFormat::OIHW => &k_input.shape[0],
KernelFormat::HWIO => &k_input.shape[krank as usize - 1],
};
s.equals(&inputs[bias].shape[0], filter_o)
})?
}
s.given_2(&inputs[0].rank, &k_input.rank, move |s, irank, krank| {
let input_c =
if self.data_format == DataFormat::NHWC || self.data_format == DataFormat::HWC {
&inputs[0].shape[irank as usize - 1]
} else {
&inputs[0].shape[1]
};
let filter_i = match self.kernel_fmt {
KernelFormat::OIHW => &k_input.shape[1],
KernelFormat::HWIO => &k_input.shape[krank as usize - 2],
};
s.equals(input_c.bex(), self.group.unwrap_or(1) as i64 * filter_i.bex())
})?;
s.given_2(&inputs[0].shape, &k_input.shape, move |s, ishape, kshape| {
if let Some(kshape) =
kshape.iter().map(|d| d.to_usize().ok()).collect::<Option<TVec<_>>>()
{
let oshape = self.output_shape(&*ishape, &*kshape)?;
s.equals(&outputs[0].shape, oshape)?;
}
Ok(())
})
}
fn wire(
&self,
prefix: &str,
model: &mut TypedModel,
inputs: &[OutletId],
) -> TractResult<TVec<OutletId>> {
let kernel = model
.outlet_fact(inputs[self.k_input.unwrap_or(1)])?
.konst
.clone()
.context("Kernel must be const")?;
let input = model.outlet_fact(inputs[0])?.clone();
let input_shape = self.data_format.shape(input.shape.iter().collect::<TVec<_>>())?;
let channels_in = match self.kernel_fmt {
KernelFormat::OIHW => kernel.shape()[1].clone() * self.group.unwrap_or(1),
KernelFormat::HWIO => kernel.shape()[kernel.rank() - 2].clone(),
};
if input_shape.c_dim() != &channels_in.to_dim() {
bail!("Input has {} channels, kernel expects {}", input_shape.c_dim(), channels_in)
}
let bias = if let Some(slot) = self.bias_input {
Some(model.outlet_fact(inputs[slot])?.konst.clone().context("Bias must be const")?)
} else {
None
};
let spatial_rank = kernel.rank() - 2;
let kshape = kernel.shape();
let group = self.group.unwrap_or(1);
let output_channels = match self.kernel_fmt {
KernelFormat::OIHW => kshape[0],
KernelFormat::HWIO => kshape[kshape.len() - 1] * group,
};
let pool_spec = PoolSpec {
data_format: self.data_format,
padding: self.padding.clone(),
strides: self.strides.clone(),
dilations: self.dilations.clone(),
kernel_shape: kshape[self.kernel_fmt.h_axis()..][..spatial_rank].into(),
output_channel_override: Some(output_channels),
};
let quantized = self.k_zero_point_input.is_some()
|| self.k_scale_input.is_some()
|| self.x_zero_point_input.is_some()
|| self.x_scale_input.is_some()
|| self.y_zero_point_input.is_some()
|| self.y_scale_input.is_some();
let output_type = self.override_output_datum_type.unwrap_or(input.datum_type);
let q_params = if quantized {
use tract_core::ops::matmul::MatMulQParams;
let zero: QParamKind = Tensor::zero_scalar_dt(input.datum_type)?.into();
let one: QParamKind = tensor0(1f32).into();
let a0 = if let Some(o) = self.k_zero_point_input { o.into() } else { zero.clone() };
let a_scale = if let Some(o) = self.k_scale_input { o.into() } else { one.clone() };
let b0 = if let Some(o) = self.x_zero_point_input { o.into() } else { zero.clone() };
let b_scale = if let Some(o) = self.x_scale_input { o.into() } else { one.clone() };
let c0 = if let Some(o) = self.y_zero_point_input { o.into() } else { zero.clone() };
let c_scale = if let Some(o) = self.y_scale_input { o.into() } else { one.clone() };
let mut qp = MatMulQParams { a0, b0, c0, a_scale, b_scale, c_scale };
qp.remove_input(self.k_input.unwrap_or(1));
if let Some(b) = self.bias_input {
qp.remove_input(b);
}
Some((output_type, qp))
} else {
None
};
let inputs = inputs
.into_iter()
.enumerate()
.filter(|&(ix, _)| {
ix != self.k_input.unwrap_or(1) && self.bias_input.map(|b| ix != b).unwrap_or(true)
})
.map(|pair| *pair.1)
.collect::<TVec<_>>();
let reduced = ConvUnary::new(pool_spec, self.kernel_fmt, kernel, group, bias, q_params);
model.wire_node(prefix, reduced, &inputs)
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::setup_test_logger;
#[test]
fn test_infer_with_known_kshape() {
let mut op = expand(Conv::default().strides(tvec![2, 2]).kernel_shape(tvec![3, 3]));
let ifact = InferenceFact::dt_shape(DatumType::F32, shapefactoid!(1, 1, 7, 5));
let kfact = InferenceFact::dt_shape(DatumType::F32, shapefactoid!(1, 1, 3, 3));
let ofact = InferenceFact::default();
let facts = op.infer_facts(tvec!(&ifact, &kfact), tvec!(&ofact), tvec!()).unwrap();
assert_eq!(
facts.1,
tvec!(InferenceFact::dt_shape(DatumType::F32, shapefactoid!(1, 1, 3, 2)))
);
}
#[test]
fn test_infer_channels() {
let mut op = expand(Conv::default());
let ifact = InferenceFact::dt_shape(DatumType::F32, shapefactoid!(1, 2, 1, 1));
let kfact = InferenceFact::dt_shape(DatumType::F32, shapefactoid!(3, 2, 1, 1));
let ofact = InferenceFact::default();
let facts = op.infer_facts(tvec!(&ifact, &kfact), tvec!(&ofact), tvec!()).unwrap();
assert_eq!(
facts.1,
tvec!(InferenceFact::dt_shape(DatumType::F32, shapefactoid!(1, 3, 1, 1)))
);
}
#[test]
fn test_infer_onnx_strides_no_padding() {
let mut op = expand(Conv::default().strides(tvec![2, 2]));
let ifact = InferenceFact::dt_shape(DatumType::F32, shapefactoid!(1, 1, 7, 5));
let kfact = InferenceFact::dt_shape(DatumType::F32, shapefactoid!(1, 1, 3, 3));
let ofact = InferenceFact::default();
let facts = op.infer_facts(tvec!(&ifact, &kfact), tvec!(&ofact), tvec!()).unwrap();
assert_eq!(
facts.1,
tvec!(InferenceFact::dt_shape(DatumType::F32, shapefactoid!(1, 1, 3, 2)))
);
}
#[test]
fn test_infer_nhwc_1() {
let mut op = expand(Conv::default().nhwc().hwio().padding(PaddingSpec::SameUpper));
let ifact = InferenceFact::dt_shape(DatumType::F32, shapefactoid!(1, 2, 2, 2));
let kfact = InferenceFact::dt_shape(DatumType::F32, shapefactoid!(2, 2, 2, 1));
let ofact = InferenceFact::default();
let facts = op.infer_facts(tvec!(&ifact, &kfact), tvec!(&ofact), tvec!()).unwrap();
assert_eq!(
facts.1,
tvec!(InferenceFact::dt_shape(DatumType::F32, shapefactoid!(1, 2, 2, 1)))
);
}
#[test]
fn test_eval_nhwc_1() -> TractResult<()> {
setup_test_logger();
let op = expand(Conv::default().nhwc().hwio().padding(PaddingSpec::SameUpper));
let res = op.eval(tvec!(
Tensor::zero::<f32>(&[1, 2, 2, 2]).unwrap().into_arc_tensor(),
Tensor::zero::<f32>(&[2, 2, 2, 1]).unwrap().into_arc_tensor(),
))?;
Tensor::zero::<f32>(&[1, 2, 2, 1]).unwrap().close_enough(&res[0], false)
}
#[test]
fn test_infer_nhwc_2() {
setup_test_logger();
let mut op = expand(Conv::default().nhwc().hwio().padding(PaddingSpec::SameUpper));
let ifact = InferenceFact::dt_shape(DatumType::F32, shapefactoid!(1, 1, 2, 2));
let kfact = InferenceFact::dt_shape(DatumType::F32, shapefactoid!(2, 1, 2, 1));
let ofact = InferenceFact::default();
let facts = op.infer_facts(tvec!(&ifact, &kfact), tvec!(&ofact), tvec!()).unwrap();
assert_eq!(
facts.1,
tvec!(InferenceFact::dt_shape(DatumType::F32, shapefactoid!(1, 1, 2, 1)))
);
}
#[test]
fn test_eval_nhwc_2() {
setup_test_logger();
let op = expand(Conv::default().nhwc().hwio().padding(PaddingSpec::SameUpper));
let i = rctensor4(&[[[[0.0f32, 0.0], [1.0, 0.0]]]]);
let k = rctensor4(&[[[[0.0f32], [0.0]], [[1.0], [0.0]]]]);
let e = rctensor4(&[[[[1.0f32], [0.0]]]]);
let res = op.eval(tvec!(i, k)).unwrap();
assert_eq!(res, tvec!(e.into()));
}
#[test]
fn test_eval_nhwc_3() {
setup_test_logger();
let op = expand(Conv::default().nhwc().hwio().padding(PaddingSpec::SameUpper));
let i = rctensor4(&[[[[0.0f32, 1.0], [2.0, 3.0]], [[10.0, 11.0], [12.0, 13.0]]]]);
let k = rctensor4(&[[[[1.0f32, 0.0], [0.0, 1.0]]]]);
let res = op.eval(tvec!(i.clone(), k)).unwrap();
assert_eq!(res, tvec!(i));
}
#[test]
fn test_eval_nhwc_batch() {
setup_test_logger();
let op = expand(Conv::default().nhwc().hwio().padding(PaddingSpec::SameUpper));
let result = op
.eval(tvec!(rctensor4(&[[[[2.0f32]]], [[[0.0f32]]]]), rctensor4(&[[[[1.0f32]]]])))
.unwrap();
assert_eq!(result, tvec!(rctensor4(&[[[[2.0f32]]], [[[0.0f32]]]])));
}
#[test]
fn test_infer_ntc_simple() {
let mut op = expand(Conv::default().nhwc().hwio().padding(PaddingSpec::SameUpper));
let ifact = InferenceFact::dt_shape(DatumType::F32, shapefactoid!(1, 2, 1));
let kfact = InferenceFact::dt_shape(DatumType::F32, shapefactoid!(1, 1, 1));
let ofact = InferenceFact::default();
let facts = op.infer_facts(tvec!(&ifact, &kfact), tvec!(&ofact), tvec!()).unwrap();
assert_eq!(facts.1, tvec!(InferenceFact::dt_shape(DatumType::F32, shapefactoid!(1, 2, 1))));
}
#[test]
fn test_eval_ntc_simple() {
let op = expand(Conv::default().nhwc().hwio().padding(PaddingSpec::SameUpper));
let result =
op.eval(tvec!(rctensor3(&[[[2.0f32], [0.0f32]]]), rctensor3(&[[[1.0f32]]]))).unwrap();
assert_eq!(result, tvec!(rctensor3(&[[[2.0f32], [0.0f32]]])));
}
#[test]
fn test_infer_ntc_batch() {
let mut op = expand(Conv::default().nhwc().hwio().padding(PaddingSpec::SameUpper));
let ifact = InferenceFact::dt_shape(DatumType::F32, shapefactoid!(2, 1, 1));
let kfact = InferenceFact::dt_shape(DatumType::F32, shapefactoid!(1, 1, 1));
let ofact = InferenceFact::default();
let facts = op.infer_facts(tvec!(&ifact, &kfact), tvec!(&ofact), tvec!()).unwrap();
assert_eq!(facts.1, tvec!(InferenceFact::dt_shape(DatumType::F32, shapefactoid!(2, 1, 1))));
}
#[test]
fn test_eval_ntc_batch() {
let op = expand(Conv::default().nhwc().hwio().padding(PaddingSpec::SameUpper));
let result =
op.eval(tvec!(rctensor3(&[[[2.0f32]], [[0.0f32]]]), rctensor3(&[[[1.0f32]]]))).unwrap();
assert_eq!(result, tvec!(rctensor3(&[[[2.0f32]], [[0.0f32]]])));
}
#[test]
fn test_infer_ntc_channel() {
let mut op = expand(Conv::default().nhwc().hwio().padding(PaddingSpec::SameUpper));
let ifact = InferenceFact::dt_shape(DatumType::F32, shapefactoid!(1, 1, 2));
let kfact = InferenceFact::dt_shape(DatumType::F32, shapefactoid!(1, 2, 1));
let ofact = InferenceFact::default();
let facts = op.infer_facts(tvec!(&ifact, &kfact), tvec!(&ofact), tvec!()).unwrap();
assert_eq!(facts.1, tvec!(InferenceFact::dt_shape(DatumType::F32, shapefactoid!(1, 1, 1))));
}
#[test]
fn test_eval_ntc_channel() {
let op = expand(Conv::default().nhwc().hwio().padding(PaddingSpec::SameUpper));
let result = op
.eval(tvec!(rctensor3(&[[[2.0f32, 0.0f32]]]), rctensor3(&[[[1.0f32], [0.0f32]]])))
.unwrap();
assert_eq!(result, tvec!(rctensor3(&[[[2.0f32]]])));
}
}