1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
use crate::infer::*;
use crate::internal::*;
pub use tract_core::ops::cnn::{MaxPool, PoolSpec, SumPool};
impl InferenceRulesOp for SumPool {
fn rules<'r, 'p: 'r, 's: 'r>(
&'s self,
s: &mut Solver<'r>,
inputs: &'p [TensorProxy],
outputs: &'p [TensorProxy],
) -> InferenceResult {
check_input_arity(&inputs, 1)?;
check_output_arity(&outputs, 1)?;
s.equals(&outputs[0].datum_type, &inputs[0].datum_type)?;
rules_for_shape(&self.pool_spec, s, inputs, outputs)
}
as_op!();
to_typed!();
}
impl InferenceRulesOp for MaxPool {
fn rules<'r, 'p: 'r, 's: 'r>(
&'s self,
s: &mut Solver<'r>,
inputs: &'p [TensorProxy],
outputs: &'p [TensorProxy],
) -> InferenceResult {
check_output_arity(&outputs, 1 + self.with_index_outputs.is_some() as usize)?;
s.equals(&outputs[0].rank, &inputs[0].rank)?;
s.equals(&outputs[0].datum_type, &inputs[0].datum_type)?;
if let Some(idt) = self.with_index_outputs {
s.equals(&outputs[1].datum_type, idt)?;
s.equals(&outputs[1].shape, &outputs[0].shape)?;
}
rules_for_shape(&self.pool_spec, s, inputs, outputs)
}
fn nboutputs(&self) -> TractResult<usize> {
Ok(1 + self.with_index_outputs.is_some() as usize)
}
as_op!();
to_typed!();
}
pub fn rules_for_shape<'r, 'p: 'r, 's: 'r>(
pool_spec: &'s PoolSpec,
s: &mut Solver<'r>,
inputs: &'p [TensorProxy],
outputs: &'p [TensorProxy],
) -> InferenceResult {
s.equals(&outputs[0].rank, &inputs[0].rank)?;
s.given(&inputs[0].shape, move |s, ishape| {
let ishape = pool_spec.data_format.shape(ishape)?;
let ones = tvec![1; ishape.hw_rank()];
let computed = pool_spec.padding.compute(
ishape.hw_dims(),
&*pool_spec.kernel_shape,
pool_spec.dilations.as_ref().unwrap_or(&ones),
pool_spec.strides.as_ref().unwrap_or(&ones),
);
for o in 0..outputs.len() {
for (ix, d) in computed.iter().enumerate() {
s.equals(&outputs[o].shape[ix + ishape.h_axis()], &d.convoluted)?;
}
if ishape.n_axis().is_some() {
s.equals(&outputs[o].shape[ishape.n_axis().unwrap()], ishape.n_dim().unwrap())?;
}
if let Some(c) = pool_spec.output_channel_override {
s.equals(&outputs[o].shape[ishape.c_axis()], c.to_dim())?;
} else {
s.equals(&outputs[o].shape[ishape.c_axis()], ishape.c_dim())?;
}
}
Ok(())
})
}