Struct wiggle::wasmtime_crate::Config [−][src]
pub struct Config { /* fields omitted */ }
Expand description
Global configuration options used to create an Engine
and customize its behavior.
This structure exposed a builder-like interface and is primarily consumed by
Engine::new()
Implementations
Creates a new configuration object with the default configuration specified.
Sets the target triple for the Config
.
By default, the host target triple is used for the Config
.
This method can be used to change the target triple.
Cranelift flags will not be inferred for the given target and any existing target-specific Cranelift flags will be cleared.
Errors
This method will error if the given target triple is not supported.
Whether or not to enable support for asynchronous functions in Wasmtime.
When enabled, the config can optionally define host functions with async
.
Instances created and functions called with this Config
must be called
through their asynchronous APIs, however. For example using
Func::call
will panic when used with this config.
Asynchronous Wasm
WebAssembly does not currently have a way to specify at the bytecode
level what is and isn’t async. Host-defined functions, however, may be
defined as async
. WebAssembly imports always appear synchronous, which
gives rise to a bit of an impedance mismatch here. To solve this
Wasmtime supports “asynchronous configs” which enables calling these
asynchronous functions in a way that looks synchronous to the executing
WebAssembly code.
An asynchronous config must always invoke wasm code asynchronously,
meaning we’ll always represent its computation as a
Future
. The poll
method of the futures
returned by Wasmtime will perform the actual work of calling the
WebAssembly. Wasmtime won’t manage its own thread pools or similar,
that’s left up to the embedder.
To implement futures in a way that WebAssembly sees asynchronous host
functions as synchronous, all async Wasmtime futures will execute on a
separately allocated native stack from the thread otherwise executing
Wasmtime. This separate native stack can then be switched to and from.
Using this whenever an async
host function returns a future that
resolves to Pending
we switch away from the temporary stack back to
the main stack and propagate the Pending
status.
In general it’s encouraged that the integration with async
and
wasmtime is designed early on in your embedding of Wasmtime to ensure
that it’s planned that WebAssembly executes in the right context of your
application.
Execution in poll
The Future::poll
method is the main
driving force behind Rust’s futures. That method’s own documentation
states “an implementation of poll
should strive to return quickly, and
should not block”. This, however, can be at odds with executing
WebAssembly code as part of the poll
method itself. If your
WebAssembly is untrusted then this could allow the poll
method to take
arbitrarily long in the worst case, likely blocking all other
asynchronous tasks.
To remedy this situation you have a two possible ways to solve this:
-
First you can spawn futures into a thread pool. By doing this in a thread pool you are relaxing the requirement that
Future::poll
must be fast because your future is executing on a separate thread. This strategy, however, would likely still require some form of cancellation viacrate::Store::interrupt_handle
to ensure wasm doesn’t take too long to execute. -
Alternatively you can enable the
Config::consume_fuel
method as well ascrate::Store::out_of_fuel_async_yield
When doing so this will configure Wasmtime futures to yield periodically while they’re executing WebAssembly code. After consuming the specified amount of fuel wasm futures will returnPoll::Pending
from theirpoll
method, and will get automatically re-polled later. This enables theFuture::poll
method to take roughly a fixed amount of time since fuel is guaranteed to get consumed while wasm is executing. Note that to prevent infinite execution of wasm you’ll need to use eithercrate::Store::interrupt_handle
or a normal timeout on futures (which will get triggered due to periodicpoll
s).
In either case special care needs to be taken when integrating asynchronous wasm into your application. You should carefully plan where WebAssembly will execute and what compute resources will be allotted to it. If Wasmtime doesn’t support exactly what you’d like just yet, please feel free to open an issue!
Configures whether DWARF debug information will be emitted during compilation.
By default this option is false
.
Configures whether backtraces in Trap
will parse debug info in the wasm file to
have filename/line number information.
When enabled this will causes modules to retain debugging information found in wasm binaries. This debug information will be used when a trap happens to symbolicate each stack frame and attempt to print a filename/line number for each wasm frame in the stack trace.
By default this option is WasmBacktraceDetails::Environment
, meaning
that wasm will read WASMTIME_BACKTRACE_DETAILS
to indicate whether details
should be parsed.
Configures whether functions and loops will be interruptable via the
Store::interrupt_handle
method.
For more information see the documentation on
Store::interrupt_handle
.
By default this option is false
.
Configures whether execution of WebAssembly will “consume fuel” to either halt or yield execution as desired.
This option is similar in purpose to Config::interruptable
where
you can prevent infinitely-executing WebAssembly code. The difference
is that this option allows deterministic execution of WebAssembly code
by instrumenting generated code consume fuel as it executes. When fuel
runs out the behavior is defined by configuration within a Store
,
and by default a trap is raised.
Note that a Store
starts with no fuel, so if you enable this option
you’ll have to be sure to pour some fuel into Store
before
executing some code.
By default this option is false
.
Configures the maximum amount of stack space available for executing WebAssembly code.
WebAssembly has well-defined semantics on stack overflow. This is intended to be a knob which can help configure how much stack space wasm execution is allowed to consume. Note that the number here is not super-precise, but rather wasm will take at most “pretty close to this much” stack space.
If a wasm call (or series of nested wasm calls) take more stack space
than the size
specified then a stack overflow trap will be raised.
When the async
feature is enabled, this value cannot exceed the
async_stack_size
option. Be careful not to set this value too close
to async_stack_size
as doing so may limit how much stack space
is available for host functions. Unlike wasm functions that trap
on stack overflow, a host function that overflows the stack will
abort the process.
By default this option is 1 MiB.
Configures the size of the stacks used for asynchronous execution.
This setting configures the size of the stacks that are allocated for
asynchronous execution. The value cannot be less than max_wasm_stack
.
The amount of stack space guaranteed for host functions is
async_stack_size - max_wasm_stack
, so take care not to set these two values
close to one another; doing so may cause host functions to overflow the
stack and abort the process.
By default this option is 2 MiB.
Configures whether the WebAssembly threads proposal will be enabled for compilation.
The WebAssembly threads proposal is not currently fully standardized and is undergoing development. Additionally the support in wasmtime itself is still being worked on. Support for this feature can be enabled through this method for appropriate wasm modules.
This feature gates items such as shared memories and atomic instructions. Note that enabling the threads feature will also enable the bulk memory feature.
This is false
by default.
Note: Wasmtime does not implement everything for the wasm threads spec at this time, so bugs, panics, and possibly segfaults should be expected. This should not be enabled in a production setting right now.
Configures whether the WebAssembly reference types proposal will be enabled for compilation.
This feature gates items such as the externref
and funcref
types as
well as allowing a module to define multiple tables.
Note that enabling the reference types feature will also enable the bulk memory feature.
This is true
by default on x86-64, and false
by default on other
architectures.
Configures whether the WebAssembly SIMD proposal will be enabled for compilation.
The WebAssembly SIMD proposal is not currently fully standardized and is undergoing development. Additionally the support in wasmtime itself is still being worked on. Support for this feature can be enabled through this method for appropriate wasm modules.
This feature gates items such as the v128
type and all of its
operators being in a module.
This is false
by default.
Note: Wasmtime does not implement everything for the wasm simd spec at this time, so bugs, panics, and possibly segfaults should be expected. This should not be enabled in a production setting right now.
Configures whether the WebAssembly bulk memory operations proposal will be enabled for compilation.
This feature gates items such as the memory.copy
instruction, passive
data/table segments, etc, being in a module.
This is true
by default.
Configures whether the WebAssembly multi-value proposal will be enabled for compilation.
This feature gates functions and blocks returning multiple values in a module, for example.
This is true
by default.
Configures whether the WebAssembly multi-memory proposal will be enabled for compilation.
This feature gates modules having more than one linear memory declaration or import.
This is false
by default.
Configures whether the WebAssembly module linking proposal will be enabled for compilation.
Note that development of this feature is still underway, so enabling this is likely to be full of bugs.
This is false
by default.
Configures whether the WebAssembly memory64 proposal will be enabled for compilation.
Note that this the upstream specification is not finalized and Wasmtime may also have bugs for this feature since it hasn’t been exercised much.
This is false
by default.
Configures which compilation strategy will be used for wasm modules.
This method can be used to configure which compiler is used for wasm
modules, and for more documentation consult the Strategy
enumeration
and its documentation.
The default value for this is Strategy::Auto
.
Errors
Some compilation strategies require compile-time options of wasmtime
itself to be set, but if they’re not set and the strategy is specified
here then an error will be returned.
Creates a default profiler based on the profiling strategy chosen.
Profiler creation calls the type’s default initializer where the purpose is really just to put in place the type used for profiling.
Configures whether the debug verifier of Cranelift is enabled or not.
When Cranelift is used as a code generation backend this will configure
it to have the enable_verifier
flag which will enable a number of debug
checks inside of Cranelift. This is largely only useful for the
developers of wasmtime itself.
The default value for this is false
Configures the Cranelift code generator optimization level.
When the Cranelift code generator is used you can configure the
optimization level used for generated code in a few various ways. For
more information see the documentation of OptLevel
.
The default value for this is OptLevel::None
.
Configures whether Cranelift should perform a NaN-canonicalization pass.
When Cranelift is used as a code generation backend this will configure it to replace NaNs with a single canonical value. This is useful for users requiring entirely deterministic WebAssembly computation. This is not required by the WebAssembly spec, so it is not enabled by default.
The default value for this is false
Allows setting a Cranelift boolean flag or preset. This allows fine-tuning of Cranelift settings.
Since Cranelift flags may be unstable, this method should not be considered to be stable
either; other Config
functions should be preferred for stability.
Safety
This is marked as unsafe, because setting the wrong flag might break invariants, resulting in execution hazards.
Errors
This method can fail if the flag’s name does not exist.
Allows settings another Cranelift flag defined by a flag name and value. This allows fine-tuning of Cranelift settings.
Since Cranelift flags may be unstable, this method should not be considered to be stable
either; other Config
functions should be preferred for stability.
Note that this is marked as unsafe, because setting the wrong flag might break invariants, resulting in execution hazards.
Errors
This method can fail if the flag’s name does not exist, or the value is not appropriate for the flag type.
Loads cache configuration specified at path
.
This method will read the file specified by path
on the filesystem and
attempt to load cache configuration from it. This method can also fail
due to I/O errors, misconfiguration, syntax errors, etc. For expected
syntax in the configuration file see the documentation online.
By default cache configuration is not enabled or loaded.
This method is only available when the cache
feature of this crate is
enabled.
Errors
This method can fail due to any error that happens when loading the file
pointed to by path
and attempting to load the cache configuration.
Loads cache configuration from the system default path.
This commit is the same as Config::cache_config_load
except that it
does not take a path argument and instead loads the default
configuration present on the system. This is located, for example, on
Unix at $HOME/.config/wasmtime/config.toml
and is typically created
with the wasmtime config new
command.
By default cache configuration is not enabled or loaded.
This method is only available when the cache
feature of this crate is
enabled.
Errors
This method can fail due to any error that happens when loading the default system configuration. Note that it is not an error if the default config file does not exist, in which case the default settings for an enabled cache are applied.
pub fn with_host_memory(
&mut self,
mem_creator: Arc<dyn MemoryCreator + 'static>
) -> &mut Config
pub fn with_host_memory(
&mut self,
mem_creator: Arc<dyn MemoryCreator + 'static>
) -> &mut Config
Sets a custom memory creator.
Custom memory creators are used when creating host Memory
objects or when
creating instance linear memories for the on-demand instance allocation strategy.
Sets the instance allocation strategy to use.
When using the pooling instance allocation strategy, all linear memories
will be created as “static” and the
Config::static_memory_maximum_size
and
Config::static_memory_guard_size
options will be used to configure
the virtual memory allocations of linear memories.
Sets whether or not an attempt is made to initialize linear memories by page.
This setting is false
by default and Wasmtime initializes linear memories
by copying individual data segments from the compiled module.
Setting this to true
will cause compilation to attempt to organize the
data segments into WebAssembly pages and linear memories are initialized by
copying each page rather than individual data segments.
Modules that import a memory or have data segments that use a global base will continue to be initialized by copying each data segment individually.
When combined with the uffd
feature on Linux, this will allow Wasmtime
to delay initialization of a linear memory page until it is accessed
for the first time during WebAssembly execution; this may improve
instantiation performance as a result.
Configures the maximum size, in bytes, where a linear memory is considered static, above which it’ll be considered dynamic.
Note: this value has important performance ramifications, be sure to understand what this value does before tweaking it and benchmarking.
This function configures the threshold for wasm memories whether they’re
implemented as a dynamically relocatable chunk of memory or a statically
located chunk of memory. The max_size
parameter here is the size, in
bytes, where if the maximum size of a linear memory is below max_size
then it will be statically allocated with enough space to never have to
move. If the maximum size of a linear memory is larger than max_size
then wasm memory will be dynamically located and may move in memory
through growth operations.
Specifying a max_size
of 0 means that all memories will be dynamic and
may be relocated through memory.grow
. Also note that if any wasm
memory’s maximum size is below max_size
then it will still reserve
max_size
bytes in the virtual memory space.
Static vs Dynamic Memory
Linear memories represent contiguous arrays of bytes, but they can also be grown through the API and wasm instructions. When memory is grown if space hasn’t been preallocated then growth may involve relocating the base pointer in memory. Memories in Wasmtime are classified in two different ways:
-
static - these memories preallocate all space necessary they’ll ever need, meaning that the base pointer of these memories is never moved. Static memories may take more virtual memory space because of pre-reserving space for memories.
-
dynamic - these memories are not preallocated and may move during growth operations. Dynamic memories consume less virtual memory space because they don’t need to preallocate space for future growth.
Static memories can be optimized better in JIT code because once the
base address is loaded in a function it’s known that we never need to
reload it because it never changes, memory.grow
is generally a pretty
fast operation because the wasm memory is never relocated, and under
some conditions bounds checks can be elided on memory accesses.
Dynamic memories can’t be quite as heavily optimized because the base
address may need to be reloaded more often, they may require relocating
lots of data on memory.grow
, and dynamic memories require
unconditional bounds checks on all memory accesses.
Should you use static or dynamic memory?
In general you probably don’t need to change the value of this property. The defaults here are optimized for each target platform to consume a reasonable amount of physical memory while also generating speedy machine code.
One of the main reasons you may want to configure this today is if your environment can’t reserve virtual memory space for each wasm linear memory. On 64-bit platforms wasm memories require a 6GB reservation by default, and system limits may prevent this in some scenarios. In this case you may wish to force memories to be allocated dynamically meaning that the virtual memory footprint of creating a wasm memory should be exactly what’s used by the wasm itself.
For 32-bit memories a static memory must contain at least 4GB of reserved address space plus a guard page to elide any bounds checks at all. Smaller static memories will use similar bounds checks as dynamic memories.
Default
The default value for this property depends on the host platform. For 64-bit platforms there’s lots of address space available, so the default configured here is 4GB. WebAssembly linear memories currently max out at 4GB which means that on 64-bit platforms Wasmtime by default always uses a static memory. This, coupled with a sufficiently sized guard region, should produce the fastest JIT code on 64-bit platforms, but does require a large address space reservation for each wasm memory.
For 32-bit platforms this value defaults to 1GB. This means that wasm memories whose maximum size is less than 1GB will be allocated statically, otherwise they’ll be considered dynamic.
Static Memory and Pooled Instance Allocation
When using the pooling instance allocator memories are considered to always be static memories, they are never dynamic. This setting configures the size of linear memory to reserve for each memory in the pooling allocator.
Configures the size, in bytes, of the guard region used at the end of a static memory’s address space reservation.
Note: this value has important performance ramifications, be sure to understand what this value does before tweaking it and benchmarking.
All WebAssembly loads/stores are bounds-checked and generate a trap if they’re out-of-bounds. Loads and stores are often very performance critical, so we want the bounds check to be as fast as possible! Accelerating these memory accesses is the motivation for a guard after a memory allocation.
Memories (both static and dynamic) can be configured with a guard at the end of them which consists of unmapped virtual memory. This unmapped memory will trigger a memory access violation (e.g. segfault) if accessed. This allows JIT code to elide bounds checks if it can prove that an access, if out of bounds, would hit the guard region. This means that having such a guard of unmapped memory can remove the need for bounds checks in JIT code.
For the difference between static and dynamic memories, see the
Config::static_memory_maximum_size
.
How big should the guard be?
In general, like with configuring static_memory_maximum_size
, you
probably don’t want to change this value from the defaults. Otherwise,
though, the size of the guard region affects the number of bounds checks
needed for generated wasm code. More specifically, loads/stores with
immediate offsets will generate bounds checks based on how big the guard
page is.
For 32-bit memories a 4GB static memory is required to even start removing bounds checks. A 4GB guard size will guarantee that the module has zero bounds checks for memory accesses. A 2GB guard size will eliminate all bounds checks with an immediate offset less than 2GB. A guard size of zero means that all memory accesses will still have bounds checks.
Default
The default value for this property is 2GB on 64-bit platforms. This allows eliminating almost all bounds checks on loads/stores with an immediate offset of less than 2GB. On 32-bit platforms this defaults to 64KB.
Static vs Dynamic Guard Size
Note that for now the static memory guard size must be at least as large as the dynamic memory guard size, so configuring this property to be smaller than the dynamic memory guard size will have no effect.
Configures the size, in bytes, of the guard region used at the end of a dynamic memory’s address space reservation.
For the difference between static and dynamic memories, see the
Config::static_memory_maximum_size
For more information about what a guard is, see the documentation on
Config::static_memory_guard_size
.
Note that the size of the guard region for dynamic memories is not super critical for performance. Making it reasonably-sized can improve generated code slightly, but for maximum performance you’ll want to lean towards static memories rather than dynamic anyway.
Also note that the dynamic memory guard size must be smaller than the static memory guard size, so if a large dynamic memory guard is specified then the static memory guard size will also be automatically increased.
Default
This value defaults to 64KB.
Configures the size, in bytes, of the extra virtual memory space reserved after a “dynamic” memory for growing into.
For the difference between static and dynamic memories, see the
Config::static_memory_maximum_size
Dynamic memories can be relocated in the process’s virtual address space on growth and do not always reserve their entire space up-front. This means that a growth of the memory may require movement in the address space, which in the worst case can copy a large number of bytes from one region to another.
This setting configures how many bytes are reserved after the initial
reservation for a dynamic memory for growing into. A value of 0 here
means that no extra bytes are reserved and all calls to memory.grow
will need to relocate the wasm linear memory (copying all the bytes). A
value of 1 megabyte, however, means that memory.grow
can allocate up
to a megabyte of extra memory before the memory needs to be moved in
linear memory.
Note that this is a currently simple heuristic for optimizing the growth of dynamic memories, primarily implemented for the memory64 propsal where all memories are currently “dynamic”. This is unlikely to be a one-size-fits-all style approach and if you’re an embedder running into issues with dynamic memories and growth and are interested in having other growth strategies available here please feel free to open an issue on the Wasmtime repository!
Default
For 64-bit platforms this defaults to 2GB, and for 32-bit platforms this defaults to 1MB.
Indicates whether a guard region is present before allocations of linear memory.
Guard regions before linear memories are never used during normal operation of WebAssembly modules, even if they have out-of-bounds loads. The only purpose for a preceding guard region in linear memory is extra protection against possible bugs in code generators like Cranelift. This setting does not affect performance in any way, but will result in larger virtual memory reservations for linear memories (it won’t actually ever use more memory, just use more of the address space).
The size of the guard region before linear memory is the same as the
guard size that comes after linear memory, which is configured by
Config::static_memory_guard_size
and
Config::dynamic_memory_guard_size
.
Default
This value defaults to true
.
pub fn module_version(
&mut self,
strategy: ModuleVersionStrategy
) -> Result<&mut Config, Error>
pub fn module_version(
&mut self,
strategy: ModuleVersionStrategy
) -> Result<&mut Config, Error>
Configure the version information used in serialized and deserialzied crate::Module
s.
This effects the behavior of crate::Module::serialize()
, as well as
crate::Module::deserialize()
and related functions.
The default strategy is to use the wasmtime crate’s Cargo package version.
Configure wether wasmtime should compile a module using multiple threads.
Disabling this will result in a single thread being used to compile the wasm bytecode.
By default parallel compilation is enabled.
Trait Implementations
Auto Trait Implementations
impl !RefUnwindSafe for Config
impl !UnwindSafe for Config
Blanket Implementations
Mutably borrows from an owned value. Read more
Attaches the provided Subscriber
to this type, returning a
WithDispatch
wrapper. Read more
Attaches the current default Subscriber
to this type, returning a
WithDispatch
wrapper. Read more